Please use this identifier to cite or link to this item:
https://research.matf.bg.ac.rs/handle/123456789/607
DC Field | Value | Language |
---|---|---|
dc.contributor.author | Obrenović, K. | en_US |
dc.contributor.author | Vukmirović, Srđan | en_US |
dc.date.accessioned | 2022-08-13T15:57:32Z | - |
dc.date.available | 2022-08-13T15:57:32Z | - |
dc.date.issued | 2013-12-21 | - |
dc.identifier.issn | 00416932 | en |
dc.identifier.uri | https://research.matf.bg.ac.rs/handle/123456789/607 | - |
dc.description.abstract | In this paper we find examples of slant surfaces in the nearly Kähler six sphere. First, we characterize two-dimensional small and great spheres which are slant. Their description is given in terms of the associative 3-form in Im O. Later on, we classify the slant surfaces of S6 which are orbits of a maximal torus in G2. Among them we find a one parameter family of minimal orbits with arbitrary slant angle. | en |
dc.relation.ispartof | Revista de la Union Matematica Argentina | en |
dc.subject | Kähler angle | en |
dc.subject | Octonions | en |
dc.subject | Six sphere | en |
dc.subject | Slant surfaces | en |
dc.title | Two classes of slant surfaces in the nearly Kähler six sphere | en_US |
dc.type | Article | en_US |
dc.identifier.scopus | 2-s2.0-84893044886 | - |
dc.identifier.url | https://api.elsevier.com/content/abstract/scopus_id/84893044886 | - |
dc.contributor.affiliation | Geometry | en_US |
dc.relation.firstpage | 111 | en |
dc.relation.lastpage | 121 | en |
dc.relation.volume | 54 | en |
dc.relation.issue | 2 | en |
item.fulltext | No Fulltext | - |
item.openairetype | Article | - |
item.grantfulltext | none | - |
item.openairecristype | http://purl.org/coar/resource_type/c_18cf | - |
item.cerifentitytype | Publications | - |
crisitem.author.dept | Geometry | - |
crisitem.author.orcid | 0000-0002-5135-869X | - |
Appears in Collections: | Research outputs |
SCOPUSTM
Citations
2
checked on Nov 15, 2024
Page view(s)
9
checked on Nov 15, 2024
Google ScholarTM
Check
Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.