Please use this identifier to cite or link to this item: https://research.matf.bg.ac.rs/handle/123456789/5
DC FieldValueLanguage
dc.contributor.authorAntić, Miroslavaen_US
dc.contributor.authorDjurdjević, Natašaen_US
dc.contributor.authorMoruz, Marilenaen_US
dc.contributor.authorVrancken, Lucen_US
dc.date.accessioned2022-08-06T14:49:05Z-
dc.date.available2022-08-06T14:49:05Z-
dc.date.issued2019-02-06-
dc.identifier.issn03733114en
dc.identifier.urihttps://research.matf.bg.ac.rs/handle/123456789/5-
dc.description.abstractIt is known that there exist only four six-dimensional homogeneous non-Kähler, nearly Kähler manifolds: the sphere S 6 , the complex projective space CP 3 , the flag manifold F 3 and S 3 × S 3 . So far, most of the results about submanifolds have been obtained when the ambient space is the nearly Kähler S 6 . Recently, the investigation of almost complex and Lagrangian submanifolds of the nearly Kähler S 3 × S 3 has been initiated. Here we start the investigation of three-dimensional CR submanifolds of S 3 × S 3 . The tangent space of three-dimensional CR submanifold can be naturally split into two distributions D 1 and D1⊥. In this paper, we found conditions that three-dimensional CR submanifolds with integrable almost complex distribution D 1 should satisfy, and we give some constructions which allow us to define a wide-range family of examples of this type of submanifolds. Our main result is classification of the three-dimensional CR submanifolds with totally geodesics both, almost complex distribution D 1 and totally real distribution D1⊥.en_US
dc.language.isoenen_US
dc.publisherSpringeren_US
dc.relation.ispartofAnnali di Matematica Pura ed Applicataen_US
dc.subjectAlmost product structureen_US
dc.subjectCR submanifolden_US
dc.subjectNearly Kähler S × S 3 3en_US
dc.subjectTotally geodesic distributionen_US
dc.titleThree-dimensional CR submanifolds of the nearly Kähler S <sup>3</sup> × S <sup>3</sup>en_US
dc.typeArticleen_US
dc.identifier.doi10.1007/s10231-018-0770-8-
dc.identifier.scopus2-s2.0-85050252985-
dc.identifier.isi000460359300013-
dc.identifier.urlhttps://api.elsevier.com/content/abstract/scopus_id/85050252985-
dc.contributor.affiliationGeometryen_US
dc.relation.issn0373-3114en_US
dc.description.rankM21en_US
dc.relation.firstpage227en_US
dc.relation.lastpage242en_US
dc.relation.volume198en_US
dc.relation.issue1en_US
item.cerifentitytypePublications-
item.languageiso639-1en-
item.openairetypeArticle-
item.fulltextNo Fulltext-
item.openairecristypehttp://purl.org/coar/resource_type/c_18cf-
item.grantfulltextnone-
crisitem.author.deptGeometry-
crisitem.author.orcid0000-0002-2111-7174-
Appears in Collections:Research outputs
Show simple item record

SCOPUSTM   
Citations

8
checked on May 3, 2025

Page view(s)

20
checked on Jan 19, 2025

Google ScholarTM

Check


Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.