Please use this identifier to cite or link to this item: https://research.matf.bg.ac.rs/handle/123456789/5
DC FieldValueLanguage
dc.contributor.authorAntić, Miroslavaen_US
dc.contributor.authorDjurdjević, Natašaen_US
dc.contributor.authorMoruz, Marilenaen_US
dc.contributor.authorVrancken, Lucen_US
dc.date.accessioned2022-08-06T14:49:05Z-
dc.date.available2022-08-06T14:49:05Z-
dc.date.issued2019-02-06-
dc.identifier.issn03733114en
dc.identifier.urihttps://research.matf.bg.ac.rs/handle/123456789/5-
dc.description.abstractIt is known that there exist only four six-dimensional homogeneous non-Kähler, nearly Kähler manifolds: the sphere S 6 , the complex projective space CP 3 , the flag manifold F 3 and S 3 × S 3 . So far, most of the results about submanifolds have been obtained when the ambient space is the nearly Kähler S 6 . Recently, the investigation of almost complex and Lagrangian submanifolds of the nearly Kähler S 3 × S 3 has been initiated. Here we start the investigation of three-dimensional CR submanifolds of S 3 × S 3 . The tangent space of three-dimensional CR submanifold can be naturally split into two distributions D 1 and D1⊥. In this paper, we found conditions that three-dimensional CR submanifolds with integrable almost complex distribution D 1 should satisfy, and we give some constructions which allow us to define a wide-range family of examples of this type of submanifolds. Our main result is classification of the three-dimensional CR submanifolds with totally geodesics both, almost complex distribution D 1 and totally real distribution D1⊥.en_US
dc.relation.ispartofAnnali di Matematica Pura ed Applicataen_US
dc.subjectAlmost product structureen_US
dc.subjectCR submanifolden_US
dc.subjectNearly Kähler S × S 3 3en_US
dc.subjectTotally geodesic distributionen_US
dc.titleThree-dimensional CR submanifolds of the nearly Kähler S <sup>3</sup> × S <sup>3</sup>en_US
dc.typeArticleen_US
dc.identifier.doi10.1007/s10231-018-0770-8-
dc.identifier.scopus2-s2.0-85050252985-
dc.identifier.urlhttps://api.elsevier.com/content/abstract/scopus_id/85050252985-
dc.contributor.affiliationGeometryen_US
dc.relation.firstpage227en_US
dc.relation.lastpage242en_US
dc.relation.volume198en_US
dc.relation.issue1en_US
item.fulltextNo Fulltext-
item.openairetypeArticle-
item.grantfulltextnone-
item.openairecristypehttp://purl.org/coar/resource_type/c_18cf-
item.cerifentitytypePublications-
crisitem.author.deptGeometry-
crisitem.author.orcid0000-0002-2111-7174-
Appears in Collections:Research outputs
Show simple item record

SCOPUSTM   
Citations

8
checked on Nov 8, 2024

Page view(s)

19
checked on Nov 15, 2024

Google ScholarTM

Check

Altmetric

Altmetric


Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.