Please use this identifier to cite or link to this item: https://research.matf.bg.ac.rs/handle/123456789/595
DC FieldValueLanguage
dc.contributor.authorMarić, Filipen_US
dc.date.accessioned2022-08-13T15:50:04Z-
dc.date.available2022-08-13T15:50:04Z-
dc.date.issued2020-01-01-
dc.identifier.isbn9783030510534-
dc.identifier.issn03029743en
dc.identifier.urihttps://research.matf.bg.ac.rs/handle/123456789/595-
dc.description.abstractMany applications require generating catalogues of combinatorial objects, that do not contain isomorphs. Several efficient abstract schemes for this problem exist. One is described independently by I. A. Faradžev and R. C. Read and has since been applied to catalogue many different combinatorial structures. We present an Isabelle/HOL verification of this abstract scheme. To show its practicality, we instantiate it on two concrete problems: enumerating digraphs and enumerating union-closed families of sets. In the second example abstract algorithm specification is refined to an implementation that can quite efficiently enumerate all canonical union-closed families over a six element universe (there is more than 100 million such families).en
dc.relation.ispartofLecture Notes in Computer Science (including subseries Lecture Notes in Artificial Intelligence and Lecture Notes in Bioinformatics)en
dc.subjectIsabelle/HOLen
dc.subjectIsomorph-free exhaustive generationen
dc.subjectOrderlyen
dc.subjectSoftware verificationen
dc.titleVerifying Faradžev-Read Type Isomorph-Free Exhaustive Generationen_US
dc.typeConference Paperen_US
dc.identifier.doi10.1007/978-3-030-51054-1_16-
dc.identifier.scopus2-s2.0-85088279168-
dc.identifier.urlhttps://api.elsevier.com/content/abstract/scopus_id/85088279168-
dc.contributor.affiliationInformatics and Computer Scienceen_US
dc.relation.firstpage270en
dc.relation.lastpage287en
dc.relation.volume12167 LNAIen
item.fulltextNo Fulltext-
item.openairecristypehttp://purl.org/coar/resource_type/c_18cf-
item.cerifentitytypePublications-
item.grantfulltextnone-
item.openairetypeConference Paper-
crisitem.author.deptInformatics and Computer Science-
crisitem.author.orcid0000-0001-7219-6960-
Appears in Collections:Research outputs
Show simple item record

SCOPUSTM   
Citations

3
checked on Dec 21, 2024

Page view(s)

11
checked on Dec 24, 2024

Google ScholarTM

Check

Altmetric

Altmetric


Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.