Please use this identifier to cite or link to this item: https://research.matf.bg.ac.rs/handle/123456789/591
DC FieldValueLanguage
dc.contributor.authorLazović, Bojanaen_US
dc.contributor.authorMarić, Miroslaven_US
dc.contributor.authorFilipović, Vladimiren_US
dc.contributor.authorSavić, Aleksandaren_US
dc.date.accessioned2022-08-13T14:52:05Z-
dc.date.available2022-08-13T14:52:05Z-
dc.date.issued2012-12-01-
dc.identifier.issn03501302en
dc.identifier.urihttps://research.matf.bg.ac.rs/handle/123456789/591-
dc.description.abstractWe consider the maximum set splitting problem (MSSP). For the first time an integer linear programming (ILP) formulation is presented and validity of this formulation is given. We propose a genetic algorithm (GA) that uses the binary encoding and the standard genetic operators adapted to the problem. The overall performance of the GA implementation is improved by a caching technique. Experimental results are performed on two sets of instances from the literature: minimumhitting set and Steiner triple systems. The results show that CPLEX optimally solved all hitting set instances up to 500elements and 10000 subsets. Also, it can be seen that GA routinely reached all optimal solutions up to 500 elements and 50000 subsets. The Steiner triple systems seems to be much more challenging for maximum set splitting problems since theCPLEX solved to optimality, within two hours, only two instances up to 15 elements and 35 subsets. For these instances GA reached all solutions as CPLEX but in much smaller running time.en
dc.relation.ispartofPublications de l'Institut Mathematiqueen_US
dc.subjectGenetic algorithmen
dc.subjectSet splittingen
dc.subjectSteiner triple systems.en
dc.titleAn integer linear programming formulation and genetic algorithm for the maximum set splitting problemen_US
dc.typeArticleen_US
dc.identifier.doi10.2298/PIM1206025L-
dc.identifier.scopus2-s2.0-84873036668-
dc.identifier.urlhttps://api.elsevier.com/content/abstract/scopus_id/84873036668-
dc.contributor.affiliationInformatics and Computer Scienceen_US
dc.contributor.affiliationInformatics and Computer Scienceen_US
dc.contributor.affiliationNumerical Mathematics and Optimizationen_US
dc.relation.firstpage25en_US
dc.relation.lastpage34en_US
dc.relation.volume92en_US
dc.relation.issue106en_US
item.fulltextNo Fulltext-
item.openairetypeArticle-
item.grantfulltextnone-
item.openairecristypehttp://purl.org/coar/resource_type/c_18cf-
item.cerifentitytypePublications-
crisitem.author.deptInformatics and Computer Science-
crisitem.author.deptInformatics and Computer Science-
crisitem.author.deptNumerical Mathematics and Optimization-
crisitem.author.orcid0000-0001-7446-0577-
crisitem.author.orcid0000-0002-5943-8037-
crisitem.author.orcid0009-0003-8568-4260-
Appears in Collections:Research outputs
Show simple item record

SCOPUSTM   
Citations

1
checked on Nov 9, 2024

Page view(s)

15
checked on Nov 15, 2024

Google ScholarTM

Check

Altmetric

Altmetric


Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.