Please use this identifier to cite or link to this item:
https://research.matf.bg.ac.rs/handle/123456789/588
DC Field | Value | Language |
---|---|---|
dc.contributor.author | Takači, Aleksandar | en_US |
dc.contributor.author | Štajner-Papuga, Ivana | en_US |
dc.contributor.author | Drakulić, Darko | en_US |
dc.contributor.author | Marić, Miroslav | en_US |
dc.date.accessioned | 2022-08-13T14:52:05Z | - |
dc.date.available | 2022-08-13T14:52:05Z | - |
dc.date.issued | 2016-01-01 | - |
dc.identifier.issn | 17858860 | en |
dc.identifier.uri | https://research.matf.bg.ac.rs/handle/123456789/588 | - |
dc.description.abstract | The aim of this paper is to demonstrate the applicability of the Choquet integral, a well-known fuzzy integral, in the Maximal Covering Location Problem (MCLP). Possible benefits of the used integral, which is based on monotone set functions, include the flexibility of а monotone set function, which is in the core of the Choquet integral, for modeling the Decision Maker's behavior. Various mathematical models of the Maximal Covering Location Problem are given. The approach, based on the Choquet integral versus the standard approach, is thoroughly discussed and illustrated by several examples. | en |
dc.relation.ispartof | Acta Polytechnica Hungarica | en |
dc.subject | Choquet integral | en |
dc.subject | Maximal Covering Location Problem | en |
dc.subject | Monotone set function | en |
dc.title | An extension of maximal covering location problem based on the Choquet integral | en_US |
dc.type | Article | en_US |
dc.identifier.doi | 10.12700/APH.13.4.2016.4.13 | - |
dc.identifier.scopus | 2-s2.0-84984796557 | - |
dc.identifier.url | https://api.elsevier.com/content/abstract/scopus_id/84984796557 | - |
dc.contributor.affiliation | Informatics and Computer Science | en_US |
dc.relation.firstpage | 205 | en |
dc.relation.lastpage | 220 | en |
dc.relation.volume | 13 | en |
dc.relation.issue | 4 | en |
item.fulltext | No Fulltext | - |
item.openairetype | Article | - |
item.grantfulltext | none | - |
item.openairecristype | http://purl.org/coar/resource_type/c_18cf | - |
item.cerifentitytype | Publications | - |
crisitem.author.dept | Informatics and Computer Science | - |
crisitem.author.orcid | 0000-0001-7446-0577 | - |
Appears in Collections: | Research outputs |
SCOPUSTM
Citations
2
checked on Nov 9, 2024
Page view(s)
10
checked on Nov 15, 2024
Google ScholarTM
Check
Altmetric
Altmetric
Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.