Please use this identifier to cite or link to this item: https://research.matf.bg.ac.rs/handle/123456789/588
DC FieldValueLanguage
dc.contributor.authorTakači, Aleksandaren_US
dc.contributor.authorŠtajner-Papuga, Ivanaen_US
dc.contributor.authorDrakulić, Darkoen_US
dc.contributor.authorMarić, Miroslaven_US
dc.date.accessioned2022-08-13T14:52:05Z-
dc.date.available2022-08-13T14:52:05Z-
dc.date.issued2016-01-01-
dc.identifier.issn17858860en
dc.identifier.urihttps://research.matf.bg.ac.rs/handle/123456789/588-
dc.description.abstractThe aim of this paper is to demonstrate the applicability of the Choquet integral, a well-known fuzzy integral, in the Maximal Covering Location Problem (MCLP). Possible benefits of the used integral, which is based on monotone set functions, include the flexibility of а monotone set function, which is in the core of the Choquet integral, for modeling the Decision Maker's behavior. Various mathematical models of the Maximal Covering Location Problem are given. The approach, based on the Choquet integral versus the standard approach, is thoroughly discussed and illustrated by several examples.en_US
dc.language.isoenen_US
dc.publisherSpringeren_US
dc.relation.ispartofActa Polytechnica Hungaricaen_US
dc.subjectChoquet integralen_US
dc.subjectMaximal Covering Location Problemen_US
dc.subjectMonotone set functionen_US
dc.titleAn extension of maximal covering location problem based on the Choquet integralen_US
dc.typeArticleen_US
dc.identifier.doi10.12700/APH.13.4.2016.4.13-
dc.identifier.scopus2-s2.0-84984796557-
dc.identifier.isi000384766900013-
dc.identifier.urlhttps://api.elsevier.com/content/abstract/scopus_id/84984796557-
dc.contributor.affiliationInformatics and Computer Scienceen_US
dc.relation.issn1785-8860en_US
dc.description.rankM22en_US
dc.relation.firstpage205en_US
dc.relation.lastpage220en_US
dc.relation.volume13en_US
dc.relation.issue4en_US
item.openairetypeArticle-
item.fulltextNo Fulltext-
item.languageiso639-1en-
item.cerifentitytypePublications-
item.openairecristypehttp://purl.org/coar/resource_type/c_18cf-
item.grantfulltextnone-
crisitem.author.deptInformatics and Computer Science-
crisitem.author.orcid0000-0001-7446-0577-
Appears in Collections:Research outputs
Show simple item record

SCOPUSTM   
Citations

3
checked on Oct 27, 2025

Page view(s)

11
checked on Jan 19, 2025

Google ScholarTM

Check

Altmetric

Altmetric


Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.