Please use this identifier to cite or link to this item: https://research.matf.bg.ac.rs/handle/123456789/587
DC FieldValueLanguage
dc.contributor.authorTakaci, Aleksandaren_US
dc.contributor.authorStajner-Papuga, Ivanaen_US
dc.contributor.authorMarić, Miroslaven_US
dc.contributor.authorDrakulic, Darkoen_US
dc.date.accessioned2022-08-13T14:52:05Z-
dc.date.available2022-08-13T14:52:05Z-
dc.date.issued2014-10-14-
dc.identifier.isbn9781479959969-
dc.identifier.urihttps://research.matf.bg.ac.rs/handle/123456789/587-
dc.description.abstractThe aim of this paper is to show a potential applicability of some well-known fuzzy integrals, i.e., of the Choquet integral and the Sugeno integral, in Minimal and Maximal Covering location problems, i.e., in MinCLP and MCLP. Possible benefits of the use of Choquet and Sugeno integrals lie in the flexibility of a monotone set function which is the core of the observed integrals and which is being used for modelling Decision Maker's behavior. Mathematical models of Minimal and Maximal Covering location problems are given. Approach based on fuzzy integrals versus the standard two types of operators is discussed. Ideas for the future work and applications are presented.en
dc.relation.ispartofSISY 2014 - IEEE 12th International Symposium on Intelligent Systems and Informatics, Proceedingsen
dc.subjectChoquet integralen
dc.subjectcoveringen
dc.subjectmaximalen
dc.subjectminimalen
dc.subjectSugeno integralen
dc.titleA note on the use of Choquet and Sugeno integrals in minimal and maximal covering location problemsen_US
dc.typeConference Paperen_US
dc.identifier.doi10.1109/SISY.2014.6923577-
dc.identifier.scopus2-s2.0-84911172066-
dc.identifier.urlhttps://api.elsevier.com/content/abstract/scopus_id/84911172066-
dc.contributor.affiliationInformatics and Computer Scienceen_US
dc.relation.firstpage159en
dc.relation.lastpage162en
item.fulltextNo Fulltext-
item.openairetypeConference Paper-
item.grantfulltextnone-
item.openairecristypehttp://purl.org/coar/resource_type/c_18cf-
item.cerifentitytypePublications-
crisitem.author.deptInformatics and Computer Science-
crisitem.author.orcid0000-0001-7446-0577-
Appears in Collections:Research outputs
Show simple item record

SCOPUSTM   
Citations

2
checked on Nov 15, 2024

Page view(s)

15
checked on Nov 15, 2024

Google ScholarTM

Check

Altmetric

Altmetric


Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.