Please use this identifier to cite or link to this item: https://research.matf.bg.ac.rs/handle/123456789/572
DC FieldValueLanguage
dc.contributor.authorDrakulić, Darkoen_US
dc.contributor.authorTakači, Aleksandaren_US
dc.contributor.authorMarić, Miroslaven_US
dc.date.accessioned2022-08-13T14:52:03Z-
dc.date.available2022-08-13T14:52:03Z-
dc.date.issued2021-01-01-
dc.identifier.issn1860949Xen
dc.identifier.urihttps://research.matf.bg.ac.rs/handle/123456789/572-
dc.description.abstractConventional models of many combinatorial optimization problems rarely encompass real-life problems, because real-life problems usually contain a high degree of uncertainty. These uncertainties can be modeled using various methods, including fuzzy sets. Apart from the precise description from the problems’ nature, fuzzy variables can describe the problem better, improve the solution and reduce costs for decision makers. In this chapter we show how fuzzy logic can be used for modeling uncertainties in combinatorial problems and improve their quality. The focus will be on the Location Set Covering Problem (LSCP), the Maximal Covering Location Problem (MCLP) and the Minimal Covering Location Problem (MinCLP) as a special modification of the MCLP, but the same method could be applied to other problems. These problems are applicable in searching for optimal places for desired and undesired facilities under the given conditions. Each problem will be formally described with its own mathematical model and some of their instances will be solved. Firstly, small-size instances of the problems will be solved with an exact algorithm using the CPLEX optimizer tool, and when a dimension becomes too big for exact solving, the instances will be then solved with a Particle Swarm Optimization (PSO) meta-heuristic.en_US
dc.language.isoenen_US
dc.relation.ispartofStudies in Computational Intelligenceen_US
dc.subjectAggregation functionen_US
dc.subjectArtificial intelligenceen_US
dc.subjectCombinatorial optimizationen_US
dc.subjectCovering location problemen_US
dc.subjectFuzzy logicen_US
dc.subjectFuzzy setsen_US
dc.subjectOrdered weighted sumen_US
dc.subjectSwarm optimizationen_US
dc.subjectTriangular normen_US
dc.titleThe Use of Fuzzy Logic in Various Combinatorial Optimization Problemsen_US
dc.typeBook Parten_US
dc.relation.publicationArtificial Intelligence: Theory and Applicationsen_US
dc.identifier.doi10.1007/978-3-030-72711-6_8-
dc.identifier.scopus2-s2.0-85111961735-
dc.identifier.urlhttps://api.elsevier.com/content/abstract/scopus_id/85111961735-
dc.contributor.affiliationInformatics and Computer Scienceen_US
dc.relation.isbn978-3-030-72710-9en_US
dc.relation.firstpage137en_US
dc.relation.lastpage153en_US
dc.relation.volume973en_US
item.fulltextNo Fulltext-
item.languageiso639-1en-
item.openairetypeBook Part-
item.grantfulltextnone-
item.openairecristypehttp://purl.org/coar/resource_type/c_18cf-
item.cerifentitytypePublications-
crisitem.author.deptInformatics and Computer Science-
crisitem.author.orcid0000-0001-7446-0577-
Appears in Collections:Research outputs
Show simple item record

SCOPUSTM   
Citations

3
checked on Nov 9, 2024

Page view(s)

21
checked on Nov 15, 2024

Google ScholarTM

Check

Altmetric

Altmetric


Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.