Please use this identifier to cite or link to this item: https://research.matf.bg.ac.rs/handle/123456789/567
DC FieldValueLanguage
dc.contributor.authorJocić, Dankoen_US
dc.contributor.authorKrtinić, Đorđeen_US
dc.contributor.authorLazarević, Milanen_US
dc.date.accessioned2022-08-13T10:57:12Z-
dc.date.available2022-08-13T10:57:12Z-
dc.date.issued2020-09-01-
dc.identifier.issn13851292-
dc.identifier.urihttps://research.matf.bg.ac.rs/handle/123456789/567-
dc.description.abstractLet ∫Ω||Ath||2+||Bt∗h||2dμ(t)<+∞ for all h in a Hilbert space H, for some weakly ∗-measurable families {At}t∈Ω and {Bt}t∈Ω of bounded operators on H, where at least one of them consists of mutually commuting normal operators. If p⩾ 2 , Φ is a symmetrically norming (s.n.) function, Φ(p) is its p-modification, Φ(p)∗ is a s.n. function adjoint to Φ(p) and ||·||Φ(p)∗ is a norm on the ideal [InlineEquation not available: see fulltext.] associated to s.n. function Φ(p)∗, then for all [InlineEquation not available: see fulltext.]||∫ΩAtXBtdμ(t)||Φ(p)∗⩽||(∫ΩAt∗Atdμ(t))1/2X(∫ΩBtBt∗dμ(t))1/2||Φ(p)∗.This enable us to prove that if μ is a complex Borel measure on R+, with its total variation | μ| (R+) ⩽ 1 and [InlineEquation not available: see fulltext.] are such that A, B are dissipative and at least one of them is normal, such that [InlineEquation not available: see fulltext.] then ||iA∗-iA(μ^(A)X-Xμ^(B))iB∗-iB||Φ(p)∗⩽||I-|μ^(A)|2(AX-XB)I-|μ^(B)∗|2||Φ(p)∗.Some others norm inequalities for operator valued and transformer valued Fourier transformations are also provided.en_US
dc.relation.ispartofPositivityen_US
dc.subjectDissipative operatorsen_US
dc.subjectInner product type transformersen_US
dc.subjectNorm inequalitiesen_US
dc.subjectQ -norms ∗en_US
dc.subjectQ-normsen_US
dc.titleCauchy–Schwarz inequalities for inner product type transformers in Q <sup>∗</sup> norm ideals of compact operatorsen_US
dc.typeArticleen_US
dc.identifier.doi10.1007/s11117-019-00710-3-
dc.identifier.scopus2-s2.0-85073731660-
dc.identifier.urlhttps://api.elsevier.com/content/abstract/scopus_id/85073731660-
dc.contributor.affiliationReal and Functional Analysisen_US
dc.contributor.affiliationReal and Functional Analysisen_US
dc.contributor.affiliationMathematical Analysisen_US
dc.relation.firstpage933en_US
dc.relation.lastpage956en_US
dc.relation.volume24en_US
dc.relation.issue4en_US
item.fulltextNo Fulltext-
item.openairetypeArticle-
item.grantfulltextnone-
item.openairecristypehttp://purl.org/coar/resource_type/c_18cf-
item.cerifentitytypePublications-
crisitem.author.deptReal and Functional Analysis-
crisitem.author.deptReal and Functional Analysis-
crisitem.author.deptMathematical Analysis-
crisitem.author.orcid0000-0003-2084-7180-
crisitem.author.orcid0000-0001-5652-0038-
crisitem.author.orcid0000-0003-1408-5626-
Appears in Collections:Research outputs
Show simple item record

SCOPUSTM   
Citations

13
checked on Nov 7, 2024

Page view(s)

22
checked on Nov 14, 2024

Google ScholarTM

Check

Altmetric

Altmetric


Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.