Please use this identifier to cite or link to this item:
https://research.matf.bg.ac.rs/handle/123456789/567
DC Field | Value | Language |
---|---|---|
dc.contributor.author | Jocić, Danko | en_US |
dc.contributor.author | Krtinić, Đorđe | en_US |
dc.contributor.author | Lazarević, Milan | en_US |
dc.date.accessioned | 2022-08-13T10:57:12Z | - |
dc.date.available | 2022-08-13T10:57:12Z | - |
dc.date.issued | 2020-09-01 | - |
dc.identifier.issn | 13851292 | - |
dc.identifier.uri | https://research.matf.bg.ac.rs/handle/123456789/567 | - |
dc.description.abstract | Let ∫Ω||Ath||2+||Bt∗h||2dμ(t)<+∞ for all h in a Hilbert space H, for some weakly ∗-measurable families {At}t∈Ω and {Bt}t∈Ω of bounded operators on H, where at least one of them consists of mutually commuting normal operators. If p⩾ 2 , Φ is a symmetrically norming (s.n.) function, Φ(p) is its p-modification, Φ(p)∗ is a s.n. function adjoint to Φ(p) and ||·||Φ(p)∗ is a norm on the ideal [InlineEquation not available: see fulltext.] associated to s.n. function Φ(p)∗, then for all [InlineEquation not available: see fulltext.]||∫ΩAtXBtdμ(t)||Φ(p)∗⩽||(∫ΩAt∗Atdμ(t))1/2X(∫ΩBtBt∗dμ(t))1/2||Φ(p)∗.This enable us to prove that if μ is a complex Borel measure on R+, with its total variation | μ| (R+) ⩽ 1 and [InlineEquation not available: see fulltext.] are such that A, B are dissipative and at least one of them is normal, such that [InlineEquation not available: see fulltext.] then ||iA∗-iA(μ^(A)X-Xμ^(B))iB∗-iB||Φ(p)∗⩽||I-|μ^(A)|2(AX-XB)I-|μ^(B)∗|2||Φ(p)∗.Some others norm inequalities for operator valued and transformer valued Fourier transformations are also provided. | en_US |
dc.relation.ispartof | Positivity | en_US |
dc.subject | Dissipative operators | en_US |
dc.subject | Inner product type transformers | en_US |
dc.subject | Norm inequalities | en_US |
dc.subject | Q -norms ∗ | en_US |
dc.subject | Q-norms | en_US |
dc.title | Cauchy–Schwarz inequalities for inner product type transformers in Q <sup>∗</sup> norm ideals of compact operators | en_US |
dc.type | Article | en_US |
dc.identifier.doi | 10.1007/s11117-019-00710-3 | - |
dc.identifier.scopus | 2-s2.0-85073731660 | - |
dc.identifier.url | https://api.elsevier.com/content/abstract/scopus_id/85073731660 | - |
dc.contributor.affiliation | Real and Functional Analysis | en_US |
dc.contributor.affiliation | Real and Functional Analysis | en_US |
dc.contributor.affiliation | Mathematical Analysis | en_US |
dc.relation.firstpage | 933 | en_US |
dc.relation.lastpage | 956 | en_US |
dc.relation.volume | 24 | en_US |
dc.relation.issue | 4 | en_US |
item.fulltext | No Fulltext | - |
item.openairetype | Article | - |
item.grantfulltext | none | - |
item.openairecristype | http://purl.org/coar/resource_type/c_18cf | - |
item.cerifentitytype | Publications | - |
crisitem.author.dept | Real and Functional Analysis | - |
crisitem.author.dept | Real and Functional Analysis | - |
crisitem.author.dept | Mathematical Analysis | - |
crisitem.author.orcid | 0000-0003-2084-7180 | - |
crisitem.author.orcid | 0000-0001-5652-0038 | - |
crisitem.author.orcid | 0000-0003-1408-5626 | - |
Appears in Collections: | Research outputs |
SCOPUSTM
Citations
13
checked on Nov 7, 2024
Page view(s)
22
checked on Nov 14, 2024
Google ScholarTM
Check
Altmetric
Altmetric
Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.