Please use this identifier to cite or link to this item: https://research.matf.bg.ac.rs/handle/123456789/562
DC FieldValueLanguage
dc.contributor.authorKečkić, Dragoljuben_US
dc.contributor.authorKrtinić, Đorđeen_US
dc.date.accessioned2022-08-13T10:46:26Z-
dc.date.available2022-08-13T10:46:26Z-
dc.date.issued2011-01-25-
dc.identifier.issn00308730en
dc.identifier.urihttps://research.matf.bg.ac.rs/handle/123456789/562-
dc.description.abstractWe define weak and ultraweak functional calculus and construct using the Fourier transform technique an ultraweak functional calculus for an unbounded k-tuple of commuting generalized scalar operators Tj acting on a Banach space X. This functional calculus comprises the functions from the subset of Sobolev space, where α > 0. It also contains some unbounded functions. We also give examples and related results. © 2011 by Pacific Journal of Mathematics.en
dc.relation.ispartofPacific Journal of Mathematicsen_US
dc.subjectFourier transformen
dc.subjectFunctional calculusen
dc.subjectUnbounded operatorsen
dc.titleA functional calculus for unbounded generalized scalar operators on banach spacesen_US
dc.typeArticleen_US
dc.identifier.doi10.2140/pjm.2011.249.135-
dc.identifier.scopus2-s2.0-78751619855-
dc.identifier.urlhttps://api.elsevier.com/content/abstract/scopus_id/78751619855-
dc.contributor.affiliationMathematical Analysisen_US
dc.contributor.affiliationReal and Functional Analysisen_US
dc.relation.firstpage135en_US
dc.relation.lastpage156en_US
dc.relation.volume249en_US
dc.relation.issue1en_US
item.fulltextNo Fulltext-
item.openairetypeArticle-
item.grantfulltextnone-
item.openairecristypehttp://purl.org/coar/resource_type/c_18cf-
item.cerifentitytypePublications-
crisitem.author.deptReal and Functional Analysis-
crisitem.author.orcid0000-0001-7981-4696-
crisitem.author.orcid0000-0001-5652-0038-
Appears in Collections:Research outputs
Show simple item record

Page view(s)

14
checked on Nov 14, 2024

Google ScholarTM

Check

Altmetric

Altmetric


Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.