Please use this identifier to cite or link to this item: https://research.matf.bg.ac.rs/handle/123456789/559
DC FieldValueLanguage
dc.contributor.authorMelentijević, Petaren_US
dc.date.accessioned2022-08-13T10:40:01Z-
dc.date.available2022-08-13T10:40:01Z-
dc.date.issued2019-08-20-
dc.identifier.issn00018708en
dc.identifier.urihttps://research.matf.bg.ac.rs/handle/123456789/559-
dc.description.abstractThis paper deals with an extremal problem for bounded harmonic functions in the unit ball Bn. We solve the Khavinson conjecture in R3, an intriguing open question since 1992 posed by D. Khavinson, later considered in a general context by Kresin and Maz'ya. Precisely, we obtain the following inequality: [Formula presented] with ρ=|x|, thus sharpening the previously known with [Formula presented].en
dc.relation.ispartofAdvances in Mathematicsen
dc.subjectBounded harmonic functionsen
dc.subjectGradient of functionen
dc.subjectKhavinson problemen
dc.subjectRadial derivativeen
dc.subjectSharp estimateen
dc.subjectUnit ballen
dc.titleA proof of the Khavinson conjecture in R<sup>3</sup>en_US
dc.typeArticleen_US
dc.identifier.doi10.1016/j.aim.2019.06.025-
dc.identifier.scopus2-s2.0-85067899918-
dc.identifier.urlhttps://api.elsevier.com/content/abstract/scopus_id/85067899918-
dc.contributor.affiliationReal and Functional Analysisen_US
dc.relation.firstpage1044en
dc.relation.lastpage1065en
dc.relation.volume352en
item.fulltextNo Fulltext-
item.openairetypeArticle-
item.grantfulltextnone-
item.openairecristypehttp://purl.org/coar/resource_type/c_18cf-
item.cerifentitytypePublications-
crisitem.author.orcid0000-0003-4343-7459-
Appears in Collections:Research outputs
Show simple item record

SCOPUSTM   
Citations

9
checked on Nov 10, 2024

Page view(s)

9
checked on Nov 14, 2024

Google ScholarTM

Check

Altmetric

Altmetric


Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.