Please use this identifier to cite or link to this item: https://research.matf.bg.ac.rs/handle/123456789/558
DC FieldValueLanguage
dc.contributor.authorMelentijević, Petaren_US
dc.date.accessioned2022-08-13T10:40:01Z-
dc.date.available2022-08-13T10:40:01Z-
dc.date.issued2018-01-01-
dc.identifier.issn1239629Xen
dc.identifier.urihttps://research.matf.bg.ac.rs/handle/123456789/558-
dc.description.abstractIn this paper we prove a refinement of Schwarz's lemma for holomorphic mappings from the unit ball Bn ⊂ Cn to the unit disk D ⊂ C obtained by Kalaj in [3]. We also give some corollaries of this result and a similar result for pluriharmonic functions. In particular, we give an improvement of Schwarz's lemma for non-vanishing holomorphic functions from Bn to D that was obtained in a recent paper by Dyakonov [2]. Finally, we give a new and short proof of Markovic's theorem on contractivity of harmonic mappings from the upper half-plane H to the positive reals. The same result does not hold for higher dimensions, as is shown by given counterexamples.en_US
dc.language.isoenen_US
dc.publisherHelsinki : Suomalainen Tiedeakatemiaen_US
dc.relation.ispartofAnnales Academiae Scientiarum Fennicae Mathematicaen_US
dc.subjectBergman distanceen_US
dc.subjectHarnack's inequalityen_US
dc.subjectHyperbolic distanceen_US
dc.subjectM-invariant gradienten_US
dc.subjectSchwarz's lemmaen_US
dc.titleInvariant gradient in refinements of Schwarz and Harnack inequalitiesen_US
dc.typeArticleen_US
dc.identifier.doi10.5186/aasfm.2018.4324-
dc.identifier.scopus2-s2.0-85042869296-
dc.identifier.isi000429434500022-
dc.identifier.urlhttps://api.elsevier.com/content/abstract/scopus_id/85042869296-
dc.contributor.affiliationReal and Functional Analysisen_US
dc.relation.issn1239-629Xen_US
dc.description.rankM21en_US
dc.relation.firstpage391en_US
dc.relation.lastpage399en_US
dc.relation.volume43en_US
item.languageiso639-1en-
item.openairecristypehttp://purl.org/coar/resource_type/c_18cf-
item.fulltextNo Fulltext-
item.grantfulltextnone-
item.openairetypeArticle-
item.cerifentitytypePublications-
crisitem.author.deptReal and Functional Analysis-
crisitem.author.orcid0000-0003-4343-7459-
Appears in Collections:Research outputs
Show simple item record

SCOPUSTM   
Citations

11
checked on Aug 27, 2025

Page view(s)

18
checked on Jan 19, 2025

Google ScholarTM

Check

Altmetric

Altmetric


Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.