Please use this identifier to cite or link to this item: https://research.matf.bg.ac.rs/handle/123456789/555
DC FieldValueLanguage
dc.contributor.authorMelentijević, Petaren_US
dc.date.accessioned2022-08-13T10:40:01Z-
dc.date.available2022-08-13T10:40:01Z-
dc.date.issued2019-12-02-
dc.identifier.issn17476933en
dc.identifier.urihttps://research.matf.bg.ac.rs/handle/123456789/555-
dc.description.abstractWe get sharp pointwise estimates for the gradient of Pf, where P is Bergman projection in terms of Lp -norm of function f defined in Bn. Using limiting argument we transfer this result to Cauchy projection on Sn and hence, the optimal gradient estimates of solution of (Formula presented.) -problem, thus extending results from Kalaj, Vujadinović [Norm of the Bergman projection onto the Bloch space. J Oper Theory. 2015;73(1):113–126], Kalaj, Marković [Optimal estimates for the gradient of harmonic functions in the unit disk. Complex Anal Oper Theory. 2013;7:1167–1183], Melentijević [Norm of the Bergman projection onto the Bloch space with M -invariant gradient norm. arXiv 1711.08719[math.CV]]. As corollaries we get the sharp gradient estimate of a function in L2 Hardy and Bergman spaces and exact norms of Cauchy projection acting into the Bloch space equipped with several (quasi)-norms.en_US
dc.language.isoenen_US
dc.publisherTaylor and Francisen_US
dc.relation.ispartofComplex Variables and Elliptic Equationsen_US
dc.subject-invariant gradienten_US
dc.subject31B10en_US
dc.subjectBergman projectionen_US
dc.subjectBloch spaceen_US
dc.subjectCauchy projectionen_US
dc.subjectgradient estimateen_US
dc.subjectoperator normen_US
dc.subjectPrimary 47B35en_US
dc.subjectSiegel upper-half spaceen_US
dc.subjectunit ballen_US
dc.titleCauchy and Bergman projection, sharp gradient estimates and certain operator norm equalitiesen_US
dc.typeArticleen_US
dc.identifier.doi10.1080/17476933.2019.1574771-
dc.identifier.scopus2-s2.0-85063456987-
dc.identifier.isi000464644300001-
dc.identifier.urlhttps://api.elsevier.com/content/abstract/scopus_id/85063456987-
dc.contributor.affiliationReal and Functional Analysisen_US
dc.relation.issn1747-6933en_US
dc.description.rankM22en_US
dc.relation.firstpage2091en_US
dc.relation.lastpage2104en_US
dc.relation.volume64en_US
dc.relation.issue12en_US
item.openairetypeArticle-
item.cerifentitytypePublications-
item.fulltextNo Fulltext-
item.grantfulltextnone-
item.languageiso639-1en-
item.openairecristypehttp://purl.org/coar/resource_type/c_18cf-
crisitem.author.deptReal and Functional Analysis-
crisitem.author.orcid0000-0003-4343-7459-
Appears in Collections:Research outputs
Show simple item record

SCOPUSTM   
Citations

1
checked on Jul 4, 2025

Page view(s)

13
checked on Jan 19, 2025

Google ScholarTM

Check

Altmetric

Altmetric


Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.