Please use this identifier to cite or link to this item: https://research.matf.bg.ac.rs/handle/123456789/554
DC FieldValueLanguage
dc.contributor.authorChen, Jiaolongen_US
dc.contributor.authorKalaj, Daviden_US
dc.contributor.authorMelentijević, Petaren_US
dc.date.accessioned2022-08-13T10:40:00Z-
dc.date.available2022-08-13T10:40:00Z-
dc.date.issued2022-
dc.identifier.issn09262601en
dc.identifier.urihttps://research.matf.bg.ac.rs/handle/123456789/554-
dc.description.abstractIn this paper, we partly solve the generalized Khavinson conjecture in the setting of hyperbolic harmonic mappings in Hardy space. Assume that u= PΩ[ϕ] and ϕ∈ Lp(∂Ω , ℝ) , where p∈ [1 , ∞] , PΩ[ϕ] denotes the Poisson integral of ϕ with respect to the hyperbolic Laplacian operator Δh in Ω, and Ω denotes the unit ball Bn or the half-space ℍn. For any x ∈Ω and l∈ Sn−1, let CΩ,q(x) and CΩ,q(x;l) denote the optimal numbers for the gradient estimate|∇u(x)|≤CΩ,q(x)∥ϕ∥Lp(∂Ω,ℝ) and the gradient estimate in the direction l|〈∇u(x),l〉|≤CΩ,q(x;l)∥ϕ∥Lp(∂Ω,ℝ), respectively. Here q is the conjugate of p. If q∈ [1 , ∞] , then CBn,q(0)≡CBn,q(0;l) for any l∈ Sn−1. If q= ∞, q = 1 or q∈[2K0−1n−1+1,2K0n−1+1] with K∈ ℕ, then CBn,q(x)=CBn,q(x;±x|x|) for any x∈ Bn∖ { 0 } , and Cℍn,q(x)=Cℍn,q(x;±en) for any x∈ ℍn. However, if q∈(1,nn−1), then CBn,q(x)=CBn,q(x;tx) for any x∈ Bn∖ { 0 } , and Cℍn,q(x)=Cℍn,q(x;ten) for any x∈ ℍn. Here tw denotes any unit vector in ℝn such that 〈tw,w〉 = 0 for w∈ ℝn∖ { 0 }.en_US
dc.relation.ispartofPotential Analysisen
dc.subjectEstimates of the gradienten_US
dc.subjectHardy spaceen_US
dc.subjectHyperbolic harmonic mappingsen_US
dc.subjectThe generalized Khavinson conjectureen_US
dc.titleKhavinson Problem for Hyperbolic Harmonic Mappings in Hardy Spaceen_US
dc.typeArticleen_US
dc.identifier.doi10.1007/s11118-022-10004-1-
dc.identifier.scopus2-s2.0-85129897955-
dc.identifier.urlhttps://api.elsevier.com/content/abstract/scopus_id/85129897955-
dc.contributor.affiliationReal and Functional Analysisen_US
item.fulltextNo Fulltext-
item.openairetypeArticle-
item.grantfulltextnone-
item.openairecristypehttp://purl.org/coar/resource_type/c_18cf-
item.cerifentitytypePublications-
crisitem.author.orcid0000-0003-4343-7459-
Appears in Collections:Research outputs
Show simple item record

SCOPUSTM   
Citations

1
checked on Nov 8, 2024

Page view(s)

13
checked on Nov 14, 2024

Google ScholarTM

Check

Altmetric

Altmetric


Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.