Please use this identifier to cite or link to this item:
https://research.matf.bg.ac.rs/handle/123456789/554
DC Field | Value | Language |
---|---|---|
dc.contributor.author | Chen, Jiaolong | en_US |
dc.contributor.author | Kalaj, David | en_US |
dc.contributor.author | Melentijević, Petar | en_US |
dc.date.accessioned | 2022-08-13T10:40:00Z | - |
dc.date.available | 2022-08-13T10:40:00Z | - |
dc.date.issued | 2022 | - |
dc.identifier.issn | 09262601 | en |
dc.identifier.uri | https://research.matf.bg.ac.rs/handle/123456789/554 | - |
dc.description.abstract | In this paper, we partly solve the generalized Khavinson conjecture in the setting of hyperbolic harmonic mappings in Hardy space. Assume that u= PΩ[ϕ] and ϕ∈ Lp(∂Ω , ℝ) , where p∈ [1 , ∞] , PΩ[ϕ] denotes the Poisson integral of ϕ with respect to the hyperbolic Laplacian operator Δh in Ω, and Ω denotes the unit ball Bn or the half-space ℍn. For any x ∈Ω and l∈ Sn−1, let CΩ,q(x) and CΩ,q(x;l) denote the optimal numbers for the gradient estimate|∇u(x)|≤CΩ,q(x)∥ϕ∥Lp(∂Ω,ℝ) and the gradient estimate in the direction l|〈∇u(x),l〉|≤CΩ,q(x;l)∥ϕ∥Lp(∂Ω,ℝ), respectively. Here q is the conjugate of p. If q∈ [1 , ∞] , then CBn,q(0)≡CBn,q(0;l) for any l∈ Sn−1. If q= ∞, q = 1 or q∈[2K0−1n−1+1,2K0n−1+1] with K∈ ℕ, then CBn,q(x)=CBn,q(x;±x|x|) for any x∈ Bn∖ { 0 } , and Cℍn,q(x)=Cℍn,q(x;±en) for any x∈ ℍn. However, if q∈(1,nn−1), then CBn,q(x)=CBn,q(x;tx) for any x∈ Bn∖ { 0 } , and Cℍn,q(x)=Cℍn,q(x;ten) for any x∈ ℍn. Here tw denotes any unit vector in ℝn such that 〈tw,w〉 = 0 for w∈ ℝn∖ { 0 }. | en_US |
dc.relation.ispartof | Potential Analysis | en |
dc.subject | Estimates of the gradient | en_US |
dc.subject | Hardy space | en_US |
dc.subject | Hyperbolic harmonic mappings | en_US |
dc.subject | The generalized Khavinson conjecture | en_US |
dc.title | Khavinson Problem for Hyperbolic Harmonic Mappings in Hardy Space | en_US |
dc.type | Article | en_US |
dc.identifier.doi | 10.1007/s11118-022-10004-1 | - |
dc.identifier.scopus | 2-s2.0-85129897955 | - |
dc.identifier.url | https://api.elsevier.com/content/abstract/scopus_id/85129897955 | - |
dc.contributor.affiliation | Real and Functional Analysis | en_US |
item.fulltext | No Fulltext | - |
item.openairetype | Article | - |
item.grantfulltext | none | - |
item.openairecristype | http://purl.org/coar/resource_type/c_18cf | - |
item.cerifentitytype | Publications | - |
crisitem.author.orcid | 0000-0003-4343-7459 | - |
Appears in Collections: | Research outputs |
SCOPUSTM
Citations
1
checked on Nov 8, 2024
Page view(s)
13
checked on Nov 14, 2024
Google ScholarTM
Check
Altmetric
Altmetric
Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.