Please use this identifier to cite or link to this item: https://research.matf.bg.ac.rs/handle/123456789/553
DC FieldValueLanguage
dc.contributor.authorMelentijević, Petaren_US
dc.contributor.authorBožin, Vladimiren_US
dc.date.accessioned2022-08-13T10:40:00Z-
dc.date.available2022-08-13T10:40:00Z-
dc.date.issued2021-
dc.identifier.issn09262601en
dc.identifier.urihttps://research.matf.bg.ac.rs/handle/123456789/553-
dc.description.abstractWe prove sharp version of Riesz-Fejér inequality for functions in harmonic Hardy space hp(D) on the unit disk D, for p > 1, thus extending the result from Kayumov et al. (Potential Anal. 52, 105–113, 2020) and resolving the posed conjecture.en
dc.relation.ispartofPotential Analysisen
dc.subjectHarmonic functionsen
dc.subjectRiesz-Fejér inequalityen
dc.subjectSchur testen
dc.subjectSharp estimatesen
dc.titleSharp Riesz-Fejér Inequality for Harmonic Hardy Spacesen_US
dc.typeArticleen_US
dc.identifier.doi10.1007/s11118-020-09839-3-
dc.identifier.scopus2-s2.0-85081393805-
dc.identifier.urlhttps://api.elsevier.com/content/abstract/scopus_id/85081393805-
dc.contributor.affiliationReal and Functional Analysisen_US
dc.contributor.affiliationReal and Complex Analysisen_US
dc.relation.firstpage575en
dc.relation.lastpage580en
dc.relation.volume54en
dc.relation.issue4en
item.fulltextNo Fulltext-
item.openairetypeArticle-
item.grantfulltextnone-
item.openairecristypehttp://purl.org/coar/resource_type/c_18cf-
item.cerifentitytypePublications-
crisitem.author.deptReal and Complex Analysis-
crisitem.author.orcid0000-0003-4343-7459-
crisitem.author.orcid0009-0001-3845-453X-
Appears in Collections:Research outputs
Show simple item record

SCOPUSTM   
Citations

5
checked on Nov 9, 2024

Page view(s)

12
checked on Nov 14, 2024

Google ScholarTM

Check

Altmetric

Altmetric


Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.