Please use this identifier to cite or link to this item: https://research.matf.bg.ac.rs/handle/123456789/552
DC FieldValueLanguage
dc.contributor.authorMelentijević, Petaren_US
dc.contributor.authorMarković, Marijanen_US
dc.date.accessioned2022-08-13T10:40:00Z-
dc.date.available2022-08-13T10:40:00Z-
dc.date.issued2023-
dc.identifier.issn09262601en
dc.identifier.urihttps://research.matf.bg.ac.rs/handle/123456789/552-
dc.description.abstractLet P+ be the Riesz’s projection operator and let P− = I − P+. We consider estimates of the expression ∥(|P+f|s+|P−f|s)1s∥Lp(T) in terms of Lebesgue p-norm of the function f ∈ Lp(T). We find the accurate estimates for p ≥ 2 and 0 < s ≤ p, thus significantly improving the Kalaj result who treated this problem for s = 2 and 1 < p< ∞. Interestingly, for this range of s the appropriate vector-valued inequality holds with the same constant. Additionally, we obtain the right asymptotic of the constants for large s. This proves the conjecture of Hollenbeck and Verbitsky on the Riesz projection operator in some cases.en_US
dc.language.isoenen_US
dc.publisherSpringeren_US
dc.relation.ispartofPotential Analysisen_US
dc.subjectHarmonic functionsen_US
dc.subjectLumer’s hardy spacesen_US
dc.subjectRiesz’s theoremen_US
dc.subjectSharp inequalitiesen_US
dc.subjectSubharmonic functionsen_US
dc.titleBest Constants in Inequalities Involving Analytic and Co-Analytic Projections and Riesz’S Theorem in Various Function Spacesen_US
dc.typeArticleen_US
dc.identifier.doi10.1007/s11118-022-10021-0-
dc.identifier.scopus2-s2.0-85133680886-
dc.identifier.isi000825014900001-
dc.identifier.urlhttps://api.elsevier.com/content/abstract/scopus_id/85133680886-
dc.contributor.affiliationReal and Functional Analysisen_US
dc.relation.issn0926-2601en_US
dc.description.rankM21en_US
dc.relation.firstpage1599en_US
dc.relation.lastpage1620en_US
dc.relation.volume59en_US
dc.relation.issue4en_US
item.openairetypeArticle-
item.languageiso639-1en-
item.grantfulltextnone-
item.openairecristypehttp://purl.org/coar/resource_type/c_18cf-
item.fulltextNo Fulltext-
item.cerifentitytypePublications-
crisitem.author.deptReal and Functional Analysis-
crisitem.author.orcid0000-0003-4343-7459-
Appears in Collections:Research outputs
Show simple item record

SCOPUSTM   
Citations

8
checked on Dec 8, 2025

Page view(s)

12
checked on Jan 19, 2025

Google ScholarTM

Check

Altmetric

Altmetric


Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.