Please use this identifier to cite or link to this item: https://research.matf.bg.ac.rs/handle/123456789/552
DC FieldValueLanguage
dc.contributor.authorMelentijević, Petaren_US
dc.contributor.authorMarković, Marijanen_US
dc.date.accessioned2022-08-13T10:40:00Z-
dc.date.available2022-08-13T10:40:00Z-
dc.date.issued2022-
dc.identifier.issn09262601en
dc.identifier.urihttps://research.matf.bg.ac.rs/handle/123456789/552-
dc.description.abstractLet P+ be the Riesz’s projection operator and let P− = I − P+. We consider estimates of the expression ∥(|P+f|s+|P−f|s)1s∥Lp(T) in terms of Lebesgue p-norm of the function f ∈ Lp(T). We find the accurate estimates for p ≥ 2 and 0 < s ≤ p, thus significantly improving the Kalaj result who treated this problem for s = 2 and 1 < p< ∞. Interestingly, for this range of s the appropriate vector-valued inequality holds with the same constant. Additionally, we obtain the right asymptotic of the constants for large s. This proves the conjecture of Hollenbeck and Verbitsky on the Riesz projection operator in some cases.en
dc.relation.ispartofPotential Analysisen
dc.subjectHarmonic functionsen
dc.subjectLumer’s hardy spacesen
dc.subjectRiesz’s theoremen
dc.subjectSharp inequalitiesen
dc.subjectSubharmonic functionsen
dc.titleBest Constants in Inequalities Involving Analytic and Co-Analytic Projections and Riesz’S Theorem in Various Function Spacesen_US
dc.typeArticleen_US
dc.identifier.doi10.1007/s11118-022-10021-0-
dc.identifier.scopus2-s2.0-85133680886-
dc.identifier.urlhttps://api.elsevier.com/content/abstract/scopus_id/85133680886-
dc.contributor.affiliationReal and Functional Analysisen_US
item.fulltextNo Fulltext-
item.openairetypeArticle-
item.grantfulltextnone-
item.openairecristypehttp://purl.org/coar/resource_type/c_18cf-
item.cerifentitytypePublications-
crisitem.author.orcid0000-0003-4343-7459-
Appears in Collections:Research outputs
Show simple item record

SCOPUSTM   
Citations

4
checked on Nov 7, 2024

Page view(s)

9
checked on Nov 14, 2024

Google ScholarTM

Check

Altmetric

Altmetric


Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.