Please use this identifier to cite or link to this item: https://research.matf.bg.ac.rs/handle/123456789/548
DC FieldValueLanguage
dc.contributor.authorJocić, Dankoen_US
dc.contributor.authorKrtinić, Đorđeen_US
dc.date.accessioned2022-08-13T10:31:38Z-
dc.date.available2022-08-13T10:31:38Z-
dc.date.issued2010-05-01-
dc.identifier.issn03081087en
dc.identifier.urihttps://research.matf.bg.ac.rs/handle/123456789/548-
dc.description.abstractWe prove that a matrix is continuous if and only if it is spanned by its diagonals, even when the concept of continuity for matrices is extended to infinite block matrices belonging to normed ideal generated by a given unitarily invariant norm. We also prove a block matrix generalization of Bernstein inequality:, and for any unitarily invariant norm, and for every, such that for some N∈ℕ it satisfy Xmn=0 for all {pipe}m-n{pipe}>N. © 2010 Taylor & Francis.en_US
dc.language.isoenen_US
dc.relation.ispartofLinear and Multilinear Algebraen
dc.subjectAbel convergenceen_US
dc.subjectBernstein inequalityen_US
dc.subjectCesaro sumsen_US
dc.subjectContinuous block matricesen_US
dc.subjectFejer's theoryen_US
dc.subjectToeplitz matricesen_US
dc.subjectUnitarily invariant normsen_US
dc.titleSchur-Laurent multipliers for block matrices and geometric characterization of continuous matricesen_US
dc.typeArticleen_US
dc.identifier.doi10.1080/03081080802689230-
dc.identifier.scopus2-s2.0-77951912102-
dc.identifier.urlhttps://api.elsevier.com/content/abstract/scopus_id/77951912102-
dc.contributor.affiliationReal and Functional Analysisen_US
dc.contributor.affiliationReal and Functional Analysisen_US
dc.description.rankM21en_US
dc.relation.firstpage523en
dc.relation.lastpage534en
dc.relation.volume58en
dc.relation.issue4en
item.openairetypeArticle-
item.cerifentitytypePublications-
item.fulltextNo Fulltext-
item.openairecristypehttp://purl.org/coar/resource_type/c_18cf-
item.languageiso639-1en-
item.grantfulltextnone-
crisitem.author.deptReal and Functional Analysis-
crisitem.author.deptReal and Functional Analysis-
crisitem.author.orcid0000-0003-2084-7180-
crisitem.author.orcid0000-0001-5652-0038-
Appears in Collections:Research outputs
Show simple item record

SCOPUSTM   
Citations

2
checked on Apr 1, 2025

Page view(s)

13
checked on Jan 19, 2025

Google ScholarTM

Check

Altmetric

Altmetric


Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.