Please use this identifier to cite or link to this item:
https://research.matf.bg.ac.rs/handle/123456789/547
DC Field | Value | Language |
---|---|---|
dc.contributor.author | Jocić, Danko | en_US |
dc.date.accessioned | 2022-08-13T10:31:38Z | - |
dc.date.available | 2022-08-13T10:31:38Z | - |
dc.date.issued | 1998-01-01 | - |
dc.identifier.issn | 00029939 | en |
dc.identifier.uri | https://research.matf.bg.ac.rs/handle/123456789/547 | - |
dc.description.abstract | The Cauchy-Schwarz norm inequality for normal elementary operators equation presented implies a means inequality for generalized normal derivations for all r ≥ 2, as well as an inequality for normal contractions A and B for all X in B(H) and for all unitarily invariant norms. ©1998 American Mathematical Society. | en |
dc.relation.ispartof | Proceedings of the American Mathematical Society | en |
dc.subject | Ky fan dominance property | en |
dc.subject | Unitarily invariant norms | en |
dc.title | Cauchy-Schwarz and means inequalities for elementary operators into norm ideals | en_US |
dc.type | Article | en_US |
dc.identifier.doi | 10.1090/s0002-9939-98-04342-1 | - |
dc.identifier.scopus | 2-s2.0-22044434170 | - |
dc.identifier.url | https://api.elsevier.com/content/abstract/scopus_id/22044434170 | - |
dc.contributor.affiliation | Real and Functional Analysis | en_US |
dc.relation.firstpage | 2705 | en |
dc.relation.lastpage | 2711 | en |
dc.relation.volume | 126 | en |
dc.relation.issue | 9 | en |
item.fulltext | No Fulltext | - |
item.openairetype | Article | - |
item.grantfulltext | none | - |
item.openairecristype | http://purl.org/coar/resource_type/c_18cf | - |
item.cerifentitytype | Publications | - |
crisitem.author.dept | Real and Functional Analysis | - |
crisitem.author.orcid | 0000-0003-2084-7180 | - |
Appears in Collections: | Research outputs |
SCOPUSTM
Citations
19
checked on Nov 9, 2024
Page view(s)
13
checked on Nov 14, 2024
Google ScholarTM
Check
Altmetric
Altmetric
Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.