Please use this identifier to cite or link to this item:
https://research.matf.bg.ac.rs/handle/123456789/545
DC Field | Value | Language |
---|---|---|
dc.contributor.author | Jocić, Danko | en_US |
dc.date.accessioned | 2022-08-13T10:31:38Z | - |
dc.date.available | 2022-08-13T10:31:38Z | - |
dc.date.issued | 1999-01-01 | - |
dc.identifier.issn | 00029939 | en |
dc.identifier.uri | https://research.matf.bg.ac.rs/handle/123456789/545 | - |
dc.description.abstract | For generalized normal derivations, acting on the space of all bounded Hubert space operators, the following integral representation formulas hold: (1) f(A)X - Xf(B)= σ(A)σ(B) f(z) - f(ω)/z - ω E(dz) (AX - XB)F(dw), and Πf(A)X - Xf(B)Π22 (2) = σ(A)σ(B) |f(z) - f(ω)/z - ω|2 ΠE(dz)(AX - XB)F(dw)Π22, whenever AX - XB is a Hilbert-Schmidt class operator and f is a Lipschitz class function on σ(A) ∪σ(B). Applying this formula, we extend the Fuglede-Putnam theorem concerning commutativity modulo Hilbert-Schmidt class, as well as trace inequalities for covariance matrices of Muir and Wong. Some new monotone matrix functions and norm inequalities are also derived. © 1999 American Mathematical Society. | en |
dc.relation.ispartof | Proceedings of the American Mathematical Society | en |
dc.subject | Double operator integrals | en |
dc.subject | Ky-fan dominance property | en |
dc.subject | Unitarily invariant norms | en |
dc.title | Integral representation formula for generalized normal derivations | en_US |
dc.type | Article | en_US |
dc.identifier.doi | 10.1090/s0002-9939-99-04802-9 | - |
dc.identifier.scopus | 2-s2.0-22644449719 | - |
dc.identifier.url | https://api.elsevier.com/content/abstract/scopus_id/22644449719 | - |
dc.contributor.affiliation | Real and Functional Analysis | en_US |
dc.relation.firstpage | 2303 | en |
dc.relation.lastpage | 2314 | en |
dc.relation.volume | 127 | en |
dc.relation.issue | 8 | en |
item.grantfulltext | none | - |
item.fulltext | No Fulltext | - |
item.openairetype | Article | - |
item.openairecristype | http://purl.org/coar/resource_type/c_18cf | - |
item.cerifentitytype | Publications | - |
crisitem.author.dept | Real and Functional Analysis | - |
crisitem.author.orcid | 0000-0003-2084-7180 | - |
Appears in Collections: | Research outputs |
SCOPUSTM
Citations
11
checked on Mar 30, 2025
Page view(s)
11
checked on Jan 19, 2025
Google ScholarTM
Check
Altmetric
Altmetric
Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.