Please use this identifier to cite or link to this item: https://research.matf.bg.ac.rs/handle/123456789/545
DC FieldValueLanguage
dc.contributor.authorJocić, Dankoen_US
dc.date.accessioned2022-08-13T10:31:38Z-
dc.date.available2022-08-13T10:31:38Z-
dc.date.issued1999-01-01-
dc.identifier.issn00029939en
dc.identifier.urihttps://research.matf.bg.ac.rs/handle/123456789/545-
dc.description.abstractFor generalized normal derivations, acting on the space of all bounded Hubert space operators, the following integral representation formulas hold: (1) f(A)X - Xf(B)= σ(A)σ(B) f(z) - f(ω)/z - ω E(dz) (AX - XB)F(dw), and Πf(A)X - Xf(B)Π22 (2) = σ(A)σ(B) |f(z) - f(ω)/z - ω|2 ΠE(dz)(AX - XB)F(dw)Π22, whenever AX - XB is a Hilbert-Schmidt class operator and f is a Lipschitz class function on σ(A) ∪σ(B). Applying this formula, we extend the Fuglede-Putnam theorem concerning commutativity modulo Hilbert-Schmidt class, as well as trace inequalities for covariance matrices of Muir and Wong. Some new monotone matrix functions and norm inequalities are also derived. © 1999 American Mathematical Society.en
dc.relation.ispartofProceedings of the American Mathematical Societyen
dc.subjectDouble operator integralsen
dc.subjectKy-fan dominance propertyen
dc.subjectUnitarily invariant normsen
dc.titleIntegral representation formula for generalized normal derivationsen_US
dc.typeArticleen_US
dc.identifier.doi10.1090/s0002-9939-99-04802-9-
dc.identifier.scopus2-s2.0-22644449719-
dc.identifier.urlhttps://api.elsevier.com/content/abstract/scopus_id/22644449719-
dc.contributor.affiliationReal and Functional Analysisen_US
dc.relation.firstpage2303en
dc.relation.lastpage2314en
dc.relation.volume127en
dc.relation.issue8en
item.fulltextNo Fulltext-
item.openairetypeArticle-
item.grantfulltextnone-
item.openairecristypehttp://purl.org/coar/resource_type/c_18cf-
item.cerifentitytypePublications-
crisitem.author.deptReal and Functional Analysis-
crisitem.author.orcid0000-0003-2084-7180-
Appears in Collections:Research outputs
Show simple item record

SCOPUSTM   
Citations

11
checked on Nov 7, 2024

Page view(s)

10
checked on Nov 14, 2024

Google ScholarTM

Check

Altmetric

Altmetric


Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.