Please use this identifier to cite or link to this item:
https://research.matf.bg.ac.rs/handle/123456789/543
DC Field | Value | Language |
---|---|---|
dc.contributor.author | Jocić, Danko | en_US |
dc.contributor.author | Lazarević, Milan | en_US |
dc.contributor.author | Milošević, Stefan | en_US |
dc.date.accessioned | 2022-08-13T10:31:38Z | - |
dc.date.available | 2022-08-13T10:31:38Z | - |
dc.date.issued | 2020-02-01 | - |
dc.identifier.issn | 00243795 | en |
dc.identifier.uri | https://research.matf.bg.ac.rs/handle/123456789/543 | - |
dc.description.abstract | Let Φ be a symmetrically norming (s.n.) function, p⩾2, Φ(p)⁎ to be a dual s.n. function to p-modified s.n. function Φ(p), (Figure presented.), with A and B being normal operators such that (Figure presented.). If both A and B are strictly accretive, then for non-constant Pick function [Formula presented]. If A and B have strictly contractive real parts, then [Formula presented] If A is cohyponormal, B is hyponormal and at least one of them is normal, such that (Figure presented.), then [Formula presented] Inequality (1) generalizes “difference” version of Heinz norm inequality [13, Hilfssatz 3] and mean values norm inequality [21, th. 4.4] for operator monotone functions. Inequality (2) remains valid for all s.n. function Φ if A and B are both (additionally) normal, which extends inequalities in [32, th. 5] and [34, rem. 25] for self-adjoint operators H and K, whence their spectra σ(H) and σ(K) are contained in (−π/2,π/2), to non necessarily self-adjoint operators A and B. | en |
dc.relation.ispartof | Linear Algebra and Its Applications | en |
dc.subject | Inner product type transformers | en |
dc.subject | Operator monotone functions | en |
dc.subject | Q and Q -norms ⁎ | en |
dc.title | Inequalities for generalized derivations of operator monotone functions in norm ideals of compact operators | en_US |
dc.type | Article | en_US |
dc.identifier.doi | 10.1016/j.laa.2019.10.009 | - |
dc.identifier.scopus | 2-s2.0-85073739067 | - |
dc.identifier.url | https://api.elsevier.com/content/abstract/scopus_id/85073739067 | - |
dc.contributor.affiliation | Real and Functional Analysis | en_US |
dc.relation.firstpage | 43 | en |
dc.relation.lastpage | 63 | en |
dc.relation.volume | 586 | en |
item.grantfulltext | none | - |
item.fulltext | No Fulltext | - |
item.openairetype | Article | - |
item.openairecristype | http://purl.org/coar/resource_type/c_18cf | - |
item.cerifentitytype | Publications | - |
crisitem.author.dept | Real and Functional Analysis | - |
crisitem.author.orcid | 0000-0003-2084-7180 | - |
Appears in Collections: | Research outputs |
Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.