Please use this identifier to cite or link to this item: https://research.matf.bg.ac.rs/handle/123456789/543
DC FieldValueLanguage
dc.contributor.authorJocić, Dankoen_US
dc.contributor.authorLazarević, Milanen_US
dc.contributor.authorMilošević, Stefanen_US
dc.date.accessioned2022-08-13T10:31:38Z-
dc.date.available2022-08-13T10:31:38Z-
dc.date.issued2020-02-01-
dc.identifier.issn00243795en
dc.identifier.urihttps://research.matf.bg.ac.rs/handle/123456789/543-
dc.description.abstractLet Φ be a symmetrically norming (s.n.) function, p⩾2, Φ(p)⁎ to be a dual s.n. function to p-modified s.n. function Φ(p), (Figure presented.), with A and B being normal operators such that (Figure presented.). If both A and B are strictly accretive, then for non-constant Pick function [Formula presented]. If A and B have strictly contractive real parts, then [Formula presented] If A is cohyponormal, B is hyponormal and at least one of them is normal, such that (Figure presented.), then [Formula presented] Inequality (1) generalizes “difference” version of Heinz norm inequality [13, Hilfssatz 3] and mean values norm inequality [21, th. 4.4] for operator monotone functions. Inequality (2) remains valid for all s.n. function Φ if A and B are both (additionally) normal, which extends inequalities in [32, th. 5] and [34, rem. 25] for self-adjoint operators H and K, whence their spectra σ(H) and σ(K) are contained in (−π/2,π/2), to non necessarily self-adjoint operators A and B.en
dc.relation.ispartofLinear Algebra and Its Applicationsen
dc.subjectInner product type transformersen
dc.subjectOperator monotone functionsen
dc.subjectQ and Q -norms ⁎en
dc.titleInequalities for generalized derivations of operator monotone functions in norm ideals of compact operatorsen_US
dc.typeArticleen_US
dc.identifier.doi10.1016/j.laa.2019.10.009-
dc.identifier.scopus2-s2.0-85073739067-
dc.identifier.urlhttps://api.elsevier.com/content/abstract/scopus_id/85073739067-
dc.contributor.affiliationReal and Functional Analysisen_US
dc.relation.firstpage43en
dc.relation.lastpage63en
dc.relation.volume586en
item.fulltextNo Fulltext-
item.openairetypeArticle-
item.grantfulltextnone-
item.openairecristypehttp://purl.org/coar/resource_type/c_18cf-
item.cerifentitytypePublications-
crisitem.author.deptReal and Functional Analysis-
crisitem.author.orcid0000-0003-2084-7180-
Appears in Collections:Research outputs
Show simple item record

SCOPUSTM   
Citations

10
checked on Nov 10, 2024

Page view(s)

16
checked on Nov 14, 2024

Google ScholarTM

Check

Altmetric

Altmetric


Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.