Please use this identifier to cite or link to this item: https://research.matf.bg.ac.rs/handle/123456789/542
DC FieldValueLanguage
dc.contributor.authorJocić, Dankoen_US
dc.contributor.authorLazarević, Milanen_US
dc.contributor.authorMilošević, Stefanen_US
dc.date.accessioned2022-08-13T10:31:38Z-
dc.date.available2022-08-13T10:31:38Z-
dc.date.issued2018-03-01-
dc.identifier.issn00243795en
dc.identifier.urihttps://research.matf.bg.ac.rs/handle/123456789/542-
dc.description.abstractLet ∑n=1∞(‖Anh‖2+‖An⁎h‖2+‖Bnh‖2+‖Bn⁎h‖2)<+∞ for all h in a Hilbert space H, for some families {An}n=1∞ and {Bn}n=1∞ of bounded operators on H, where at least one of them consists of mutually commuting normal operators. If p⩾2, Φ is a symmetrically normed (s.n.) function, Φ(p) is its p-modification, Φ(p)⁎ is a s.n. function adjoint to Φ(p) and ‖⋅‖Φ(p)⁎ is a norm on the ideal[Figure presented], associated to the s.n. function Φ(p)⁎, then for all[Figure presented] ‖∑n=1∞AnXBn‖Φ(p)⁎⩽‖(∑n=1∞An⁎An)1/2X(∑n=1∞BnBn⁎)1/2‖Φ(p)⁎. Amongst other applications, this new Cauchy–Schwarz type norm inequality was used to explore a class of elementary operators induced by an analytic functions with non-negative Taylor coefficients to prove that, under conditions required for (1), ‖f(∑n=1∞An⊗Bn)X‖Φ(p)⁎⩽‖f(∑n=1∞An⁎⊗An)(I)Xf(∑n=1∞Bn⊗Bn⁎)(I)‖Φ(p)⁎, whenever ‖∑n=1∞An⁎An‖, ‖∑n=1∞AnAn⁎‖, ‖∑n=1∞Bn⁎Bn‖ and ‖∑n=1∞BnBn⁎‖ are smaller then the radius of convergence of an analytic function f, where An⊗Bn stands for the bilateral multipliers[Figure presented]. Different applications and examples for the obtained norm inequalities are also provided.en
dc.relation.ispartofLinear Algebra and Its Applicationsen
dc.subjectElementary operatorsen
dc.subjectNorm inequalitiesen
dc.subjectQ-normsen
dc.titleNorm inequalities for a class of elementary operators generated by analytic functions with non-negative Taylor coefficients in ideals of compact operators related to p-modified unitarily invariant normsen_US
dc.typeArticleen_US
dc.identifier.doi10.1016/j.laa.2017.11.015-
dc.identifier.scopus2-s2.0-85034851412-
dc.identifier.urlhttps://api.elsevier.com/content/abstract/scopus_id/85034851412-
dc.contributor.affiliationReal and Functional Analysisen_US
dc.contributor.affiliationMathematical Analysisen_US
dc.relation.firstpage60en
dc.relation.lastpage83en
dc.relation.volume540en
item.fulltextNo Fulltext-
item.openairetypeArticle-
item.grantfulltextnone-
item.openairecristypehttp://purl.org/coar/resource_type/c_18cf-
item.cerifentitytypePublications-
crisitem.author.deptReal and Functional Analysis-
crisitem.author.deptMathematical Analysis-
crisitem.author.orcid0000-0003-2084-7180-
crisitem.author.orcid0000-0003-1408-5626-
Appears in Collections:Research outputs
Show simple item record

SCOPUSTM   
Citations

15
checked on Nov 8, 2024

Page view(s)

9
checked on Nov 14, 2024

Google ScholarTM

Check

Altmetric

Altmetric


Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.