Please use this identifier to cite or link to this item: https://research.matf.bg.ac.rs/handle/123456789/542
DC FieldValueLanguage
dc.contributor.authorJocić, Dankoen_US
dc.contributor.authorLazarević, Milanen_US
dc.contributor.authorMilošević, Stefanen_US
dc.date.accessioned2022-08-13T10:31:38Z-
dc.date.available2022-08-13T10:31:38Z-
dc.date.issued2018-03-01-
dc.identifier.issn00243795en
dc.identifier.urihttps://research.matf.bg.ac.rs/handle/123456789/542-
dc.description.abstractLet ∑n=1∞(‖Anh‖2+‖An⁎h‖2+‖Bnh‖2+‖Bn⁎h‖2)<+∞ for all h in a Hilbert space H, for some families {An}n=1∞ and {Bn}n=1∞ of bounded operators on H, where at least one of them consists of mutually commuting normal operators. If p⩾2, Φ is a symmetrically normed (s.n.) function, Φ(p) is its p-modification, Φ(p)⁎ is a s.n. function adjoint to Φ(p) and ‖⋅‖Φ(p)⁎ is a norm on the ideal[Figure presented], associated to the s.n. function Φ(p)⁎, then for all[Figure presented] ‖∑n=1∞AnXBn‖Φ(p)⁎⩽‖(∑n=1∞An⁎An)1/2X(∑n=1∞BnBn⁎)1/2‖Φ(p)⁎. Amongst other applications, this new Cauchy–Schwarz type norm inequality was used to explore a class of elementary operators induced by an analytic functions with non-negative Taylor coefficients to prove that, under conditions required for (1), ‖f(∑n=1∞An⊗Bn)X‖Φ(p)⁎⩽‖f(∑n=1∞An⁎⊗An)(I)Xf(∑n=1∞Bn⊗Bn⁎)(I)‖Φ(p)⁎, whenever ‖∑n=1∞An⁎An‖, ‖∑n=1∞AnAn⁎‖, ‖∑n=1∞Bn⁎Bn‖ and ‖∑n=1∞BnBn⁎‖ are smaller then the radius of convergence of an analytic function f, where An⊗Bn stands for the bilateral multipliers[Figure presented]. Different applications and examples for the obtained norm inequalities are also provided.en_US
dc.language.isoenen_US
dc.publisherElsevieren_US
dc.relation.ispartofLinear Algebra and Its Applicationsen_US
dc.subjectElementary operatorsen_US
dc.subjectNorm inequalitiesen_US
dc.subjectQ-normsen_US
dc.titleNorm inequalities for a class of elementary operators generated by analytic functions with non-negative Taylor coefficients in ideals of compact operators related to p-modified unitarily invariant normsen_US
dc.typeArticleen_US
dc.identifier.doi10.1016/j.laa.2017.11.015-
dc.identifier.scopus2-s2.0-85034851412-
dc.identifier.isi000424178300004-
dc.identifier.urlhttps://api.elsevier.com/content/abstract/scopus_id/85034851412-
dc.contributor.affiliationReal and Functional Analysisen_US
dc.contributor.affiliationMathematical Analysisen_US
dc.relation.issn0024-3795en_US
dc.description.rankM21en_US
dc.relation.firstpage60en_US
dc.relation.lastpage83en_US
dc.relation.volume540en_US
item.grantfulltextnone-
item.fulltextNo Fulltext-
item.openairecristypehttp://purl.org/coar/resource_type/c_18cf-
item.languageiso639-1en-
item.cerifentitytypePublications-
item.openairetypeArticle-
crisitem.author.deptReal and Functional Analysis-
crisitem.author.deptMathematical Analysis-
crisitem.author.orcid0000-0003-2084-7180-
crisitem.author.orcid0000-0003-1408-5626-
crisitem.author.orcid0009-0006-9264-0348-
Appears in Collections:Research outputs
Show simple item record

SCOPUSTM   
Citations

15
checked on Nov 24, 2025

Page view(s)

10
checked on Jan 19, 2025

Google ScholarTM

Check

Altmetric

Altmetric


Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.