Please use this identifier to cite or link to this item:
https://research.matf.bg.ac.rs/handle/123456789/539
DC Field | Value | Language |
---|---|---|
dc.contributor.author | Jocić, Danko | en_US |
dc.contributor.author | Krtinić, Đorđe | en_US |
dc.contributor.author | Lazarević, Milan | en_US |
dc.date.accessioned | 2022-08-13T10:31:37Z | - |
dc.date.available | 2022-08-13T10:31:37Z | - |
dc.date.issued | 2021-01-01 | - |
dc.identifier.issn | 03081087 | en |
dc.identifier.uri | https://research.matf.bg.ac.rs/handle/123456789/539 | - |
dc.description.abstract | If (Formula presented.) are normal accretive operators, (Formula presented.) and Φ is a s.n. function, we proved that (Formula presented.) (Formula presented.) Let (Formula presented.) and Φ be a s.n. function. If (Formula presented.) then we have the following generalization of Young's norm inequality in Jocić [Cauchy–Schwarz norm inequalities for weak*-integrals of operator valued functions. J Funct Anal. 2005;218:318–346], Corollary 4.1 (Formula presented.) Various examples and applications of the obtained norm inequalities are also presented, including those related to the Heinz and Heron means and Zhan inequalities. | en |
dc.relation.ispartof | Linear and Multilinear Algebra | en_US |
dc.subject | accretive operators | en |
dc.subject | Norm inequalities | en |
dc.subject | Primary 47B49 | en |
dc.subject | Q and Q -norms | en |
dc.subject | Secondary 47B47 | en |
dc.subject | Zhan inequalities | en |
dc.title | Extensions of the arithmetic–geometric means and Young's norm inequalities to accretive operators, with applications | en_US |
dc.type | Article | en_US |
dc.identifier.doi | 10.1080/03081087.2021.1900049 | - |
dc.identifier.scopus | 2-s2.0-85102948209 | - |
dc.identifier.url | https://api.elsevier.com/content/abstract/scopus_id/85102948209 | - |
dc.contributor.affiliation | Real and Functional Analysis | en_US |
dc.contributor.affiliation | Real and Functional Analysis | en_US |
dc.contributor.affiliation | Mathematical Analysis | en_US |
dc.description.rank | M21 | en_US |
dc.relation.firstpage | 4835 | en_US |
dc.relation.lastpage | 4875 | en_US |
dc.relation.volume | 70 | en_US |
dc.relation.issue | 20 | en_US |
item.grantfulltext | none | - |
item.cerifentitytype | Publications | - |
item.openairecristype | http://purl.org/coar/resource_type/c_18cf | - |
item.openairetype | Article | - |
item.fulltext | No Fulltext | - |
crisitem.author.dept | Real and Functional Analysis | - |
crisitem.author.dept | Real and Functional Analysis | - |
crisitem.author.dept | Mathematical Analysis | - |
crisitem.author.orcid | 0000-0003-2084-7180 | - |
crisitem.author.orcid | 0000-0001-5652-0038 | - |
crisitem.author.orcid | 0000-0003-1408-5626 | - |
Appears in Collections: | Research outputs |
Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.