Please use this identifier to cite or link to this item: https://research.matf.bg.ac.rs/handle/123456789/539
DC FieldValueLanguage
dc.contributor.authorJocić, Dankoen_US
dc.contributor.authorKrtinić, Đorđeen_US
dc.contributor.authorLazarević, Milanen_US
dc.date.accessioned2022-08-13T10:31:37Z-
dc.date.available2022-08-13T10:31:37Z-
dc.date.issued2021-01-01-
dc.identifier.issn03081087en
dc.identifier.urihttps://research.matf.bg.ac.rs/handle/123456789/539-
dc.description.abstractIf (Formula presented.) are normal accretive operators, (Formula presented.) and Φ is a s.n. function, we proved that (Formula presented.) (Formula presented.) Let (Formula presented.) and Φ be a s.n. function. If (Formula presented.) then we have the following generalization of Young's norm inequality in Jocić [Cauchy–Schwarz norm inequalities for weak*-integrals of operator valued functions. J Funct Anal. 2005;218:318–346], Corollary 4.1 (Formula presented.) Various examples and applications of the obtained norm inequalities are also presented, including those related to the Heinz and Heron means and Zhan inequalities.en
dc.relation.ispartofLinear and Multilinear Algebraen_US
dc.subjectaccretive operatorsen
dc.subjectNorm inequalitiesen
dc.subjectPrimary 47B49en
dc.subjectQ and Q -normsen
dc.subjectSecondary 47B47en
dc.subjectZhan inequalitiesen
dc.titleExtensions of the arithmetic–geometric means and Young's norm inequalities to accretive operators, with applicationsen_US
dc.typeArticleen_US
dc.identifier.doi10.1080/03081087.2021.1900049-
dc.identifier.scopus2-s2.0-85102948209-
dc.identifier.urlhttps://api.elsevier.com/content/abstract/scopus_id/85102948209-
dc.contributor.affiliationReal and Functional Analysisen_US
dc.contributor.affiliationReal and Functional Analysisen_US
dc.contributor.affiliationMathematical Analysisen_US
dc.description.rankM21en_US
dc.relation.firstpage4835en_US
dc.relation.lastpage4875en_US
dc.relation.volume70en_US
dc.relation.issue20en_US
item.fulltextNo Fulltext-
item.openairetypeArticle-
item.grantfulltextnone-
item.openairecristypehttp://purl.org/coar/resource_type/c_18cf-
item.cerifentitytypePublications-
crisitem.author.deptReal and Functional Analysis-
crisitem.author.deptReal and Functional Analysis-
crisitem.author.deptMathematical Analysis-
crisitem.author.orcid0000-0003-2084-7180-
crisitem.author.orcid0000-0001-5652-0038-
crisitem.author.orcid0000-0003-1408-5626-
Appears in Collections:Research outputs
Show simple item record

SCOPUSTM   
Citations

6
checked on Nov 8, 2024

Page view(s)

21
checked on Nov 14, 2024

Google ScholarTM

Check

Altmetric

Altmetric


Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.