Please use this identifier to cite or link to this item: https://research.matf.bg.ac.rs/handle/123456789/538
DC FieldValueLanguage
dc.contributor.authorJocić, Dankoen_US
dc.contributor.authorMilošević, Stefanen_US
dc.contributor.authorĐurić, Vladimiren_US
dc.date.accessioned2022-08-13T10:31:37Z-
dc.date.available2022-08-13T10:31:37Z-
dc.date.issued2017-01-01-
dc.identifier.issn03545180en
dc.identifier.urihttps://research.matf.bg.ac.rs/handle/123456789/538-
dc.description.abstractIf {At}t∈Ω and {Bt}t∈Ω are weakly*-measurable families of bounded Hilbert space operators such that transformers X ↦ ∫Ω A*t XAt dμ (t) and X ↦ ∫Ω B*t XBt dμ(t) B(H) have their spectra contained in the unit disc, then for all bounded operators (equation found) where (equation found) by analogy. If additionally (equation found) both represent bounded operators, then for all p, q, s ≥ 1 such that 1/q + 1/s = 2/p and for all Schatten p trace class operators X (equation found) If at least one of those families consists of bounded commuting normal operators, then (1) holds for all unitarily invariant Q-norms. Applications to the shift operators are also given.en
dc.relation.ispartofFilomaten
dc.subjectElementary operatorsen
dc.subjectInner product type integral transformersen
dc.subjectNorm inequalitiesen
dc.subjectQ-normsen
dc.subjectShift operatoren
dc.subjectSpectral radius defect operatoren
dc.titleNorm inequalities for elementary operators and other inner product type integral transformers with the spectra contained in the unit discen_US
dc.typeArticleen_US
dc.identifier.doi10.2298/FIL1702197J-
dc.identifier.scopus2-s2.0-85014075378-
dc.identifier.urlhttps://api.elsevier.com/content/abstract/scopus_id/85014075378-
dc.contributor.affiliationReal and Functional Analysisen_US
dc.relation.firstpage197en
dc.relation.lastpage206en
dc.relation.volume31en
dc.relation.issue2en
item.fulltextNo Fulltext-
item.openairetypeArticle-
item.grantfulltextnone-
item.openairecristypehttp://purl.org/coar/resource_type/c_18cf-
item.cerifentitytypePublications-
crisitem.author.deptReal and Functional Analysis-
crisitem.author.orcid0000-0003-2084-7180-
Appears in Collections:Research outputs
Show simple item record

SCOPUSTM   
Citations

10
checked on Nov 7, 2024

Page view(s)

16
checked on Nov 14, 2024

Google ScholarTM

Check

Altmetric

Altmetric


Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.