Please use this identifier to cite or link to this item:
https://research.matf.bg.ac.rs/handle/123456789/534
DC Field | Value | Language |
---|---|---|
dc.contributor.author | Jocić, Danko | en_US |
dc.contributor.author | Lazarević, Milan | en_US |
dc.date.accessioned | 2022-08-13T10:31:36Z | - |
dc.date.available | 2022-08-13T10:31:36Z | - |
dc.date.issued | 2022 | - |
dc.identifier.issn | 16605446 | en |
dc.identifier.uri | https://research.matf.bg.ac.rs/handle/123456789/534 | - |
dc.description.abstract | Recently obtained Cauchy–Schwarz norm inequalities for normal inner product type (i.p.t.) transformers are generalized to i.p.t. transformers generated by some subnormal families of operators. If L2(Ω , μ) is separable, Φ is a symmetrically norming (s.n.) function and at least one of square integrable families {At}t∈Ω or {Bt∗}t∈Ω is uniformly extendable to (strongly) square integrable families of commuting normal operators, then for all p⩾ 2 and X∈CΦ(p)∗(H)||∫ΩAtXBtdμ(t)||Φ(p)∗⩽||(∫ΩAt∗Atdμ(t))1/2X(∫ΩBtBt∗dμ(t))1/2||Φ(p)∗.If f(z)=∑n=0∞cnzn is analytic function with non-negative Taylor coefficients cn≥ 0 and A and B∗ are bounded quasinormal operators, such that max{||A||2,||B||2} is less than the radius of convergence for f, then for all X∈ CΦ(H) ||f(A⊗B)X||Φ=||∑n=0∞cnAnXBn||Φ⩽||f(A∗A)Xf(BB∗)||Φ.If, in addition, A, B∗ are contractions and 0<∑n=0∞cn<+∞, then ||I-A∗A(f(A)X-Xf(B))I-BB∗||Φ⩽||f(1)I-f(A∗A)(AX-XB)f(1)I-f(BB∗)||Φ⩽||f(1)I-|f(A)|2/f(1)(AX-XB)f(1)I-|f(B∗)|2/f(1)||Φ. | en_US |
dc.relation.ispartof | Mediterranean Journal of Mathematics | en_US |
dc.subject | Inner product type transformers | en_US |
dc.subject | Q and Q -norms ∗ | en_US |
dc.title | Cauchy–Schwarz norm inequalities for elementary operators and inner product type transformers generated by families of subnormal operators | en_US |
dc.type | Article | en_US |
dc.identifier.doi | 10.1007/s00009-021-01919-x | - |
dc.identifier.scopus | 2-s2.0-85124941172 | - |
dc.identifier.url | https://api.elsevier.com/content/abstract/scopus_id/85124941172 | - |
dc.contributor.affiliation | Real and Functional Analysis | en_US |
dc.contributor.affiliation | Mathematical Analysis | en_US |
dc.description.rank | M22 | en_US |
dc.relation.volume | 19 | en_US |
dc.relation.issue | 2 | en_US |
item.fulltext | No Fulltext | - |
item.openairetype | Article | - |
item.grantfulltext | none | - |
item.openairecristype | http://purl.org/coar/resource_type/c_18cf | - |
item.cerifentitytype | Publications | - |
crisitem.author.dept | Real and Functional Analysis | - |
crisitem.author.dept | Mathematical Analysis | - |
crisitem.author.orcid | 0000-0003-2084-7180 | - |
crisitem.author.orcid | 0000-0003-1408-5626 | - |
Appears in Collections: | Research outputs |
SCOPUSTM
Citations
3
checked on Nov 8, 2024
Page view(s)
27
checked on Nov 14, 2024
Google ScholarTM
Check
Altmetric
Altmetric
Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.