Please use this identifier to cite or link to this item: https://research.matf.bg.ac.rs/handle/123456789/534
DC FieldValueLanguage
dc.contributor.authorJocić, Dankoen_US
dc.contributor.authorLazarević, Milanen_US
dc.date.accessioned2022-08-13T10:31:36Z-
dc.date.available2022-08-13T10:31:36Z-
dc.date.issued2022-
dc.identifier.issn16605446en
dc.identifier.urihttps://research.matf.bg.ac.rs/handle/123456789/534-
dc.description.abstractRecently obtained Cauchy–Schwarz norm inequalities for normal inner product type (i.p.t.) transformers are generalized to i.p.t. transformers generated by some subnormal families of operators. If L2(Ω , μ) is separable, Φ is a symmetrically norming (s.n.) function and at least one of square integrable families {At}t∈Ω or {Bt∗}t∈Ω is uniformly extendable to (strongly) square integrable families of commuting normal operators, then for all p⩾ 2 and X∈CΦ(p)∗(H)||∫ΩAtXBtdμ(t)||Φ(p)∗⩽||(∫ΩAt∗Atdμ(t))1/2X(∫ΩBtBt∗dμ(t))1/2||Φ(p)∗.If f(z)=∑n=0∞cnzn is analytic function with non-negative Taylor coefficients cn≥ 0 and A and B∗ are bounded quasinormal operators, such that max{||A||2,||B||2} is less than the radius of convergence for f, then for all X∈ CΦ(H) ||f(A⊗B)X||Φ=||∑n=0∞cnAnXBn||Φ⩽||f(A∗A)Xf(BB∗)||Φ.If, in addition, A, B∗ are contractions and 0<∑n=0∞cn<+∞, then ||I-A∗A(f(A)X-Xf(B))I-BB∗||Φ⩽||f(1)I-f(A∗A)(AX-XB)f(1)I-f(BB∗)||Φ⩽||f(1)I-|f(A)|2/f(1)(AX-XB)f(1)I-|f(B∗)|2/f(1)||Φ.en_US
dc.relation.ispartofMediterranean Journal of Mathematicsen_US
dc.subjectInner product type transformersen_US
dc.subjectQ and Q -norms ∗en_US
dc.titleCauchy–Schwarz norm inequalities for elementary operators and inner product type transformers generated by families of subnormal operatorsen_US
dc.typeArticleen_US
dc.identifier.doi10.1007/s00009-021-01919-x-
dc.identifier.scopus2-s2.0-85124941172-
dc.identifier.urlhttps://api.elsevier.com/content/abstract/scopus_id/85124941172-
dc.contributor.affiliationReal and Functional Analysisen_US
dc.contributor.affiliationMathematical Analysisen_US
dc.description.rankM22en_US
dc.relation.volume19en_US
dc.relation.issue2en_US
item.fulltextNo Fulltext-
item.openairetypeArticle-
item.grantfulltextnone-
item.openairecristypehttp://purl.org/coar/resource_type/c_18cf-
item.cerifentitytypePublications-
crisitem.author.deptReal and Functional Analysis-
crisitem.author.deptMathematical Analysis-
crisitem.author.orcid0000-0003-2084-7180-
crisitem.author.orcid0000-0003-1408-5626-
Appears in Collections:Research outputs
Show simple item record

SCOPUSTM   
Citations

3
checked on Nov 8, 2024

Page view(s)

27
checked on Nov 14, 2024

Google ScholarTM

Check

Altmetric

Altmetric


Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.