Please use this identifier to cite or link to this item: https://research.matf.bg.ac.rs/handle/123456789/524
DC FieldValueLanguage
dc.contributor.authorJaničić, Predragen_US
dc.date.accessioned2022-08-13T10:14:44Z-
dc.date.available2022-08-13T10:14:44Z-
dc.date.issued2001-01-01-
dc.identifier.issn0952813Xen
dc.identifier.urihttps://research.matf.bg.ac.rs/handle/123456789/524-
dc.description.abstractIn the last decade a lot of effort has been invested into both theoretical and experimental analysis of SAT phase transition. However, a deep theoretical understanding of this phenomenon is still lacking. It is still a very challenging problem to determine a relationship between crossover points for different SAT problems. This paper introduces one new class of randomly generated SAT problems, GD-SAT, and we experimentally show there is a phase transition for the problems in this class. On the basis of both analytical and experimental arguments we conjecture that there is a surprisingly simple, linear relationship between crossover points for problems in this class. This relationship is of both theoretical and practical importance.en_US
dc.language.isoenen_US
dc.publisherTaylor and Francisen_US
dc.relation.ispartofJournal of Experimental and Theoretical Artificial Intelligenceen_US
dc.subjectNP completenessen_US
dc.subjectPhase transitionen_US
dc.subjectSAT problemen_US
dc.titleGD-SAT model and crossover lineen_US
dc.typeArticleen_US
dc.identifier.doi10.1080/09528130110063083-
dc.identifier.scopus2-s2.0-0035602143-
dc.identifier.isi000171161300002-
dc.identifier.urlhttps://api.elsevier.com/content/abstract/scopus_id/0035602143-
dc.contributor.affiliationInformatics and Computer Scienceen_US
dc.relation.issn0952-813Xen_US
dc.description.rankM23en_US
dc.relation.firstpage181en_US
dc.relation.lastpage198en_US
dc.relation.volume13en_US
dc.relation.issue3en_US
item.openairecristypehttp://purl.org/coar/resource_type/c_18cf-
item.grantfulltextnone-
item.cerifentitytypePublications-
item.fulltextNo Fulltext-
item.openairetypeArticle-
item.languageiso639-1en-
crisitem.author.deptInformatics and Computer Science-
crisitem.author.orcid0000-0001-8922-4948-
Appears in Collections:Research outputs
Show simple item record

SCOPUSTM   
Citations

2
checked on Feb 12, 2026

Page view(s)

7
checked on Jan 19, 2025

Google ScholarTM

Check

Altmetric

Altmetric


Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.