Please use this identifier to cite or link to this item: https://research.matf.bg.ac.rs/handle/123456789/504
DC FieldValueLanguage
dc.contributor.authorVujošević Janičić, Milenaen_US
dc.contributor.authorTomašević, Jelenaen_US
dc.contributor.authorJaničić, Predragen_US
dc.date.accessioned2022-08-13T10:14:41Z-
dc.date.available2022-08-13T10:14:41Z-
dc.date.issued2007-06-25-
dc.identifier.issn0958695Xen
dc.identifier.urihttps://research.matf.bg.ac.rs/handle/123456789/504-
dc.description.abstractWe present a new type of SAT problem called the k-GD-SAT, which generalizes k-SAT and GD-SAT. In k-GD-SAT, clause lengths have geometric distribution, controlled by a probability parameter p; for p = 1, a k-GD-SAT problem is a k-SAT problem. We report on the phase transition between satisfiability and unsatisfiability for randomly generated instances of k-GD-SAT. We provide theoretical analysis and experimental results suggesting that there is an intriguing relationship (linear in the parameter 1/p) between crossover points for different parameters of k-GD-SAT. We also consider a relationship between crossover points for k-SAT and k-GD-SAT and provide links between these values. © J.UCS.en
dc.relation.ispartofJournal of Universal Computer Scienceen
dc.subjectNP-complete problemsen
dc.subjectPhase transitionen
dc.subjectPrepositional satisfiabilityen
dc.subjectRandom SAT problemsen
dc.titleRandom k-GD-SAT model and its phase transitionen_US
dc.typeArticleen_US
dc.identifier.doi10.3217/jucs-013-04-0572-
dc.identifier.scopus2-s2.0-34250638309-
dc.identifier.urlhttps://api.elsevier.com/content/abstract/scopus_id/34250638309-
dc.contributor.affiliationInformatics and Computer Scienceen_US
dc.contributor.affiliationInformatics and Computer Scienceen_US
dc.contributor.affiliationInformatics and Computer Scienceen_US
dc.relation.firstpage572en
dc.relation.lastpage591en
dc.relation.volume13en
dc.relation.issue4en
item.fulltextNo Fulltext-
item.openairecristypehttp://purl.org/coar/resource_type/c_18cf-
item.cerifentitytypePublications-
item.grantfulltextnone-
item.openairetypeArticle-
crisitem.author.deptInformatics and Computer Science-
crisitem.author.deptInformatics and Computer Science-
crisitem.author.deptInformatics and Computer Science-
crisitem.author.orcid0000-0001-5396-0644-
crisitem.author.orcid0000-0002-9323-4695-
crisitem.author.orcid0000-0001-8922-4948-
Appears in Collections:Research outputs
Show simple item record

Page view(s)

27
checked on Dec 24, 2024

Google ScholarTM

Check

Altmetric

Altmetric


Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.