Please use this identifier to cite or link to this item:
https://research.matf.bg.ac.rs/handle/123456789/4
DC Field | Value | Language |
---|---|---|
dc.contributor.author | Antić, Miroslava | en_US |
dc.contributor.author | Hu, Ze Jun | en_US |
dc.contributor.author | Li, Ce Ce | en_US |
dc.contributor.author | Vrancken, Luc | en_US |
dc.date.accessioned | 2022-08-06T14:49:05Z | - |
dc.date.available | 2022-08-06T14:49:05Z | - |
dc.date.issued | 2015-10-23 | - |
dc.identifier.issn | 14398516 | en |
dc.identifier.uri | https://research.matf.bg.ac.rs/handle/123456789/4 | - |
dc.description.abstract | In this paper, continuing with Hu–Li–Vrancken and the recent work of Antić–Dillen- Schoels–Vrancken, we obtain a decomposition theorem which settled the problem of how to determine whether a given locally strongly convex affine hypersurface can be decomposed as a generalized Calabi composition of two affine hyperspheres, based on the properties of its difference tensor K and its affine shape operator S. | en |
dc.relation.ispartof | Acta Mathematica Sinica, English Series | en_US |
dc.subject | affine hyperspheres | en |
dc.subject | Generalized Calabi composition | en |
dc.subject | warped product | en |
dc.title | Characterization of the generalized Calabi composition of affine hyperspheres | en_US |
dc.type | Article | en_US |
dc.identifier.doi | 10.1007/s10114-015-4431-1 | - |
dc.identifier.scopus | 2-s2.0-84942114984 | - |
dc.identifier.url | https://api.elsevier.com/content/abstract/scopus_id/84942114984 | - |
dc.contributor.affiliation | Geometry | en_US |
dc.relation.firstpage | 1531 | en_US |
dc.relation.lastpage | 1554 | en_US |
dc.relation.volume | 31 | en_US |
dc.relation.issue | 10 | en_US |
item.fulltext | No Fulltext | - |
item.openairetype | Article | - |
item.grantfulltext | none | - |
item.openairecristype | http://purl.org/coar/resource_type/c_18cf | - |
item.cerifentitytype | Publications | - |
crisitem.author.dept | Geometry | - |
crisitem.author.orcid | 0000-0002-2111-7174 | - |
Appears in Collections: | Research outputs |
SCOPUSTM
Citations
13
checked on Nov 8, 2024
Page view(s)
11
checked on Nov 15, 2024
Google ScholarTM
Check
Altmetric
Altmetric
Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.