Please use this identifier to cite or link to this item: https://research.matf.bg.ac.rs/handle/123456789/466
DC FieldValueLanguage
dc.contributor.authorPei, Junen_US
dc.contributor.authorDražić, Zoricaen_US
dc.contributor.authorDražić, Milanen_US
dc.contributor.authorMladenović, Nenaden_US
dc.contributor.authorPardalos, Panos M.en_US
dc.date.accessioned2022-08-13T09:44:33Z-
dc.date.available2022-08-13T09:44:33Z-
dc.date.issued2019-01-01-
dc.identifier.issn10919856en
dc.identifier.urihttps://research.matf.bg.ac.rs/handle/123456789/466-
dc.description.abstractIn this paper, we propose the continuous variable neighborhood search method for finding all the solutions to a nonlinear system of equations (NSEs). We transform the NSE problem into an equivalent optimization problem, and we use a new objective function that allows us to find all the zeros. Instead of the usual sum-of-squares objective function, our objective function is presented as the sum of absolute values. Theoretical investigation confirms that our objective function provides more accurate solutions regardless of the optimization method used. In addition, we achieve a trade-off (i.e., increased precision at the expense of reduced smoothness). Computational analysis of standard test instances shows that the proposed method is more precise and much faster than two recently developed methods. Similar conclusions are drawn by comparing the proposed method with many other methods in the literature.en_US
dc.language.isoenen_US
dc.publisherInstitute for Operations Research and the Management Sciences-INFORMSen_US
dc.relation.ispartofINFORMS Journal on Computingen_US
dc.subjectContinuous optimizationen_US
dc.subjectDirect search methodsen_US
dc.subjectSystem of nonlinear equationsen_US
dc.subjectVariable neighborhood searchen_US
dc.titleContinuous variable neighborhood search (C-VNS) for solving systems of nonlinear equationsen_US
dc.typeArticleen_US
dc.identifier.doi10.1287/ijoc.2018.0876-
dc.identifier.scopus2-s2.0-85062441565-
dc.identifier.isi000468604000004-
dc.identifier.urlhttps://api.elsevier.com/content/abstract/scopus_id/85062441565-
dc.contributor.affiliationNumerical Mathematics and Optimizationen_US
dc.contributor.affiliationNumerical Mathematics and Optimizationen_US
dc.relation.issn1091-9856en_US
dc.description.rankM22en_US
dc.relation.firstpage235en_US
dc.relation.lastpage250en_US
dc.relation.volume31en_US
dc.relation.issue2en_US
item.openairetypeArticle-
item.fulltextNo Fulltext-
item.languageiso639-1en-
item.cerifentitytypePublications-
item.openairecristypehttp://purl.org/coar/resource_type/c_18cf-
item.grantfulltextnone-
crisitem.author.deptNumerical Mathematics and Optimization-
crisitem.author.deptNumerical Mathematics and Optimization-
Appears in Collections:Research outputs
Show simple item record

SCOPUSTM   
Citations

32
checked on Oct 16, 2025

Page view(s)

21
checked on Jan 19, 2025

Google ScholarTM

Check

Altmetric

Altmetric


Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.