Please use this identifier to cite or link to this item: https://research.matf.bg.ac.rs/handle/123456789/461
DC FieldValueLanguage
dc.contributor.authorCarrizosa, Emilioen_US
dc.contributor.authorDražić, Milanen_US
dc.contributor.authorDražić, Zoricaen_US
dc.contributor.authorMladenović, Nenaden_US
dc.date.accessioned2022-08-13T09:44:31Z-
dc.date.available2022-08-13T09:44:31Z-
dc.date.issued2012-09-01-
dc.identifier.issn03050548en
dc.identifier.urihttps://research.matf.bg.ac.rs/handle/123456789/461-
dc.description.abstractVariable Neighborhood Search (VNS) has shown to be a powerful tool for solving both discrete and box-constrained continuous optimization problems. In this note we extend the methodology by allowing also to address unconstrained continuous optimization problems. Instead of perturbing the incumbent solution by randomly generating a trial point in a ball of a given metric, we propose to perturb the incumbent solution by adding some noise, following a Gaussian distribution. This way of generating new trial points allows one to give, in a simple and intuitive way, preference to some directions in the search space, or, contrarily, to treat uniformly all directions. Computational results show some advantages of this new approach. © 2011 Elsevier Ltd.en
dc.relation.ispartofComputers and Operations Researchen
dc.subjectGaussian distributionen
dc.subjectGlobal optimizationen
dc.subjectMetaheuristicsen
dc.subjectNonlinear programmingen
dc.subjectVariable neighborhood searchen
dc.titleGaussian variable neighborhood search for continuous optimizationen_US
dc.typeArticleen_US
dc.identifier.doi10.1016/j.cor.2011.11.003-
dc.identifier.scopus2-s2.0-84855530343-
dc.identifier.urlhttps://api.elsevier.com/content/abstract/scopus_id/84855530343-
dc.contributor.affiliationNumerical Mathematics and Optimizationen_US
dc.contributor.affiliationNumerical Mathematics and Optimizationen_US
dc.relation.firstpage2206en
dc.relation.lastpage2213en
dc.relation.volume39en
dc.relation.issue9en
item.fulltextNo Fulltext-
item.openairetypeArticle-
item.grantfulltextnone-
item.openairecristypehttp://purl.org/coar/resource_type/c_18cf-
item.cerifentitytypePublications-
crisitem.author.deptNumerical Mathematics and Optimization-
crisitem.author.deptNumerical Mathematics and Optimization-
crisitem.author.orcid0000-0002-3434-6734-
Appears in Collections:Research outputs
Show simple item record

SCOPUSTM   
Citations

29
checked on Nov 8, 2024

Page view(s)

18
checked on Nov 14, 2024

Google ScholarTM

Check

Altmetric

Altmetric


Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.