Please use this identifier to cite or link to this item: https://research.matf.bg.ac.rs/handle/123456789/458
DC FieldValueLanguage
dc.contributor.authorAnokić, Anaen_US
dc.contributor.authorStanimirović, Zoricaen_US
dc.contributor.authorStakić, Đorđeen_US
dc.contributor.authorDavidović, Tatjanaen_US
dc.date.accessioned2022-08-13T09:27:53Z-
dc.date.available2022-08-13T09:27:53Z-
dc.date.issued2021-
dc.identifier.issn11092858en
dc.identifier.urihttps://research.matf.bg.ac.rs/handle/123456789/458-
dc.description.abstractA variant of vehicle scheduling problem (VSP) arising from the sugar beet transportation in a sugar factory in Serbia is introduced. The objective of the considered VSP is to minimize the required transportation time under problem-specific constraints. The problem is formulated as a mixed integer linear program (MILP). Within the framework of commercial CPLEX solver the proposed MILP model was able to produce optimal solutions for small size problem instances. Therefore, two metaheuristic methods, variable neighborhood search (VNS) and greedy randomized adaptive search procedure (GRASP), are designed to solve problem instances of larger dimensions. The proposed GRASP and VNS are evaluated and compared against CPLEX and each other on the set of real-life and generated problem instances. Computational results show that VNS is superior method with respect to the solution quality, while GRASP is able to find high quality solutions within very short running times.en_US
dc.language.isoenen_US
dc.publisherSpringeren_US
dc.relation.ispartofOperational Researchen_US
dc.subjectGreedy Randomized Adaptive Search Procedureen_US
dc.subjectMixed integer linear programmingen_US
dc.subjectOptimization in transporten_US
dc.subjectVariable neighborhood searchen_US
dc.subjectVehicle scheduling problemen_US
dc.titleMetaheuristic approaches to a vehicle scheduling problem in sugar beet transportationen_US
dc.typeArticleen_US
dc.identifier.doi10.1007/s12351-019-00495-z-
dc.identifier.scopus2-s2.0-85081239424-
dc.identifier.isi000698388100022-
dc.identifier.urlhttps://api.elsevier.com/content/abstract/scopus_id/85081239424-
dc.contributor.affiliationNumerical Mathematics and Optimizationen_US
dc.relation.issn1109-2858en_US
dc.description.rankM22en_US
dc.relation.firstpage2021en_US
dc.relation.lastpage2053en_US
dc.relation.volume21en_US
dc.relation.issue3en_US
item.openairecristypehttp://purl.org/coar/resource_type/c_18cf-
item.cerifentitytypePublications-
item.languageiso639-1en-
item.openairetypeArticle-
item.fulltextNo Fulltext-
item.grantfulltextnone-
crisitem.author.deptNumerical Mathematics and Optimization-
crisitem.author.orcid0000-0001-5658-4111-
Appears in Collections:Research outputs
Show simple item record

SCOPUSTM   
Citations

7
checked on Jul 21, 2025

Page view(s)

13
checked on Jan 19, 2025

Google ScholarTM

Check

Altmetric

Altmetric


Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.