Please use this identifier to cite or link to this item: https://research.matf.bg.ac.rs/handle/123456789/425
DC FieldValueLanguage
dc.contributor.authorTuba, Evaen_US
dc.contributor.authorStanimirović, Zoricaen_US
dc.date.accessioned2022-08-13T09:27:48Z-
dc.date.available2022-08-13T09:27:48Z-
dc.date.issued2017-12-04-
dc.identifier.isbn9781509064571-
dc.identifier.urihttps://research.matf.bg.ac.rs/handle/123456789/425-
dc.description.abstractClassification is part of various applications and it is an important problem that represents active research topic. Support vector machine is one of the widely used and very powerful classifier. The accuracy of support vector machine highly depends on learning parameters. Optimal parameters can be efficiently determined by using swarm intelligence algorithms. In this paper, we proposed recent elephant herding optimization algorithm for support vector machine parameter tuning. The proposed approach is tested on standard datasets and it was compared to other approaches from literature. The results of computational experiments show that our proposed algorithm outperformed genetic algorithms and grid search considering accuracy of classification.en_US
dc.language.isoenen_US
dc.publisherIEEEen_US
dc.subjectElephant herding optimizationen_US
dc.subjectSupport vector machineen_US
dc.subjectSVM parameter tuningen_US
dc.subjectSwarm intelligenceen_US
dc.titleElephant herding optimization algorithm for support vector machine parameters tuningen_US
dc.typeConference Paperen_US
dc.relation.conferenceInternational Conference on Electronics, Computers and Artificial Intelligence (ECAI) (9 ; 2017 ; Targoviste)en_US
dc.relation.publicationProceedings of the 9th International Conference on Electronics, Computers and Artificial Intelligence, ECAI 2017en_US
dc.identifier.doi10.1109/ECAI.2017.8166464-
dc.identifier.scopus2-s2.0-85043305424-
dc.identifier.urlhttps://api.elsevier.com/content/abstract/scopus_id/85043305424-
dc.identifier.urlhttps://ieeexplore.ieee.org/document/8166464-
dc.contributor.affiliationNumerical Mathematics and Optimizationen_US
dc.relation.isbn978-1-5090-6456-4en_US
dc.description.rankM33en_US
dc.relation.firstpage1en_US
dc.relation.lastpage4en_US
item.openairetypeConference Paper-
item.fulltextNo Fulltext-
item.languageiso639-1en-
item.cerifentitytypePublications-
item.openairecristypehttp://purl.org/coar/resource_type/c_18cf-
item.grantfulltextnone-
crisitem.author.deptNumerical Mathematics and Optimization-
crisitem.author.orcid0000-0001-5658-4111-
Appears in Collections:Research outputs
Show simple item record

SCOPUSTM   
Citations

52
checked on Oct 16, 2025

Page view(s)

11
checked on Jan 19, 2025

Google ScholarTM

Check

Altmetric

Altmetric


Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.