Please use this identifier to cite or link to this item: https://research.matf.bg.ac.rs/handle/123456789/425
DC FieldValueLanguage
dc.contributor.authorTuba, Evaen_US
dc.contributor.authorStanimirović, Zoricaen_US
dc.date.accessioned2022-08-13T09:27:48Z-
dc.date.available2022-08-13T09:27:48Z-
dc.date.issued2017-12-04-
dc.identifier.isbn9781509064571-
dc.identifier.urihttps://research.matf.bg.ac.rs/handle/123456789/425-
dc.description.abstractClassification is part of various applications and it is an important problem that represents active research topic. Support vector machine is one of the widely used and very powerful classifier. The accuracy of support vector machine highly depends on learning parameters. Optimal parameters can be efficiently determined by using swarm intelligence algorithms. In this paper, we proposed recent elephant herding optimization algorithm for support vector machine parameter tuning. The proposed approach is tested on standard datasets and it was compared to other approaches from literature. The results of computational experiments show that our proposed algorithm outperformed genetic algorithms and grid search considering accuracy of classification.en
dc.subjectElephant herding optimizationen
dc.subjectSupport vector machineen
dc.subjectSVM parameter tuningen
dc.subjectSwarm intelligenceen
dc.titleElephant herding optimization algorithm for support vector machine parameters tuningen_US
dc.typeConference Paperen_US
dc.relation.publicationProceedings of the 9th International Conference on Electronics, Computers and Artificial Intelligence, ECAI 2017en_US
dc.identifier.doi10.1109/ECAI.2017.8166464-
dc.identifier.scopus2-s2.0-85043305424-
dc.identifier.urlhttps://api.elsevier.com/content/abstract/scopus_id/85043305424-
dc.contributor.affiliationNumerical Mathematics and Optimizationen_US
dc.relation.firstpage1en_US
dc.relation.lastpage4en_US
item.fulltextNo Fulltext-
item.openairetypeConference Paper-
item.grantfulltextnone-
item.openairecristypehttp://purl.org/coar/resource_type/c_18cf-
item.cerifentitytypePublications-
crisitem.author.deptNumerical Mathematics and Optimization-
crisitem.author.orcid0000-0001-5658-4111-
Appears in Collections:Research outputs
Show simple item record

SCOPUSTM   
Citations

50
checked on Nov 10, 2024

Page view(s)

11
checked on Nov 15, 2024

Google ScholarTM

Check

Altmetric

Altmetric


Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.