Please use this identifier to cite or link to this item: https://research.matf.bg.ac.rs/handle/123456789/424
DC FieldValueLanguage
dc.contributor.authorStanimirović, Zoricaen_US
dc.contributor.authorMarić, Miroslaven_US
dc.contributor.authorRadojičić Matić, Ninaen_US
dc.contributor.authorBǒzović, Srdjanen_US
dc.date.accessioned2022-08-13T09:27:47Z-
dc.date.available2022-08-13T09:27:47Z-
dc.date.issued2014-01-01-
dc.identifier.issn16833511en
dc.identifier.urihttps://research.matf.bg.ac.rs/handle/123456789/424-
dc.description.abstractIn this paper we consider a discrete Load Balance location problem (LOBA). We propose two efficient hybrid metaheuristic methods for solving the LOBA problem: a combination of reduced and standard variable neighborhood search methods (RVNS-VNS), and hybridization of genetic algorithm and VNS approach (GA-VNS). The proposed hybrid methods are first benchmarked and compared on existing test problems for the LOBA problem with up to 100 customers and potential suppliers. In order to test effectiveness of the proposed methods, we modify some large-scale instances from the literature with up to 402 customers and potential suppliers. Exhaustive computational experiments show that proposed hybrid methods quickly reach all known optimal solutions, and provide solutions on large-scale problem instances in short CPU times. Regarding solution quality and running times, we conclude that the proposed GA-VNS approach outperforms other considered methods for solving the LOBA problem.en
dc.relation.ispartofApplied and Computational Mathematicsen
dc.subjectDiscrete locationen
dc.subjectGenetic algorithmen
dc.subjectLoad balancingen
dc.subjectMetaheuristic methoden
dc.subjectVariable neighborhood Searchen
dc.titleTwo efficient hybrid metaheuristic methods for solving the load balance problemen_US
dc.typeArticleen_US
dc.identifier.scopus2-s2.0-84983775931-
dc.identifier.urlhttps://api.elsevier.com/content/abstract/scopus_id/84983775931-
dc.contributor.affiliationNumerical Mathematics and Optimizationen_US
dc.contributor.affiliationInformatics and Computer Scienceen_US
dc.contributor.affiliationInformatics and Computer Scienceen_US
dc.relation.firstpage332en
dc.relation.lastpage349en
dc.relation.volume13en
dc.relation.issue3en
item.fulltextNo Fulltext-
item.openairetypeArticle-
item.grantfulltextnone-
item.openairecristypehttp://purl.org/coar/resource_type/c_18cf-
item.cerifentitytypePublications-
crisitem.author.deptNumerical Mathematics and Optimization-
crisitem.author.deptInformatics and Computer Science-
crisitem.author.deptInformatics and Computer Science-
crisitem.author.orcid0000-0001-5658-4111-
crisitem.author.orcid0000-0001-7446-0577-
crisitem.author.orcid0000-0002-9968-948X-
Appears in Collections:Research outputs
Show simple item record

SCOPUSTM   
Citations

4
checked on Nov 8, 2024

Page view(s)

18
checked on Nov 15, 2024

Google ScholarTM

Check


Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.