Please use this identifier to cite or link to this item: https://research.matf.bg.ac.rs/handle/123456789/41
DC FieldValueLanguage
dc.contributor.authorIlić Stepić, A.en_US
dc.contributor.authorOgnjanović, Z.en_US
dc.contributor.authorIkodinović, Nebojšaen_US
dc.contributor.authorPerović, A.en_US
dc.date.accessioned2022-08-06T15:09:36Z-
dc.date.available2022-08-06T15:09:36Z-
dc.date.issued2016-07-01-
dc.identifier.issn20700466en
dc.identifier.urihttps://research.matf.bg.ac.rs/handle/123456789/41-
dc.description.abstractThis paper represents an comprehensive overview of the results from three papers where we developed several propositional logics for reasoning about p-adic valued probability.Each of these logics is a sound, complete and decidable extension of classical propositional logic.en
dc.relation.ispartofP-Adic Numbers, Ultrametric Analysis, and Applicationsen_US
dc.subjectcoding informationen
dc.subjectconditional probabilityen
dc.subjectp-adicen
dc.subjectp-adic distancesen
dc.subjectprobability logicen
dc.titlep-Adic probability logicsen_US
dc.typeTexten_US
dc.identifier.doi10.1134/S2070046616030018-
dc.identifier.scopus2-s2.0-84981722685-
dc.identifier.urlhttps://api.elsevier.com/content/abstract/scopus_id/84981722685-
dc.contributor.affiliationAlgebra and Mathematical Logicen_US
dc.relation.firstpage177en_US
dc.relation.lastpage203en_US
dc.relation.volume8en_US
dc.relation.issue3en_US
item.fulltextNo Fulltext-
item.openairetypeText-
item.grantfulltextnone-
item.openairecristypehttp://purl.org/coar/resource_type/c_18cf-
item.cerifentitytypePublications-
crisitem.author.deptAlgebra and Mathematical Logic-
crisitem.author.orcid0000-0003-3832-760X-
Appears in Collections:Research outputs
Show simple item record

SCOPUSTM   
Citations

6
checked on Nov 7, 2024

Page view(s)

11
checked on Nov 14, 2024

Google ScholarTM

Check

Altmetric

Altmetric


Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.