Please use this identifier to cite or link to this item: https://research.matf.bg.ac.rs/handle/123456789/41
DC FieldValueLanguage
dc.contributor.authorIlić Stepić, A.en_US
dc.contributor.authorOgnjanović, Z.en_US
dc.contributor.authorIkodinović, Nebojšaen_US
dc.contributor.authorPerović, A.en_US
dc.date.accessioned2022-08-06T15:09:36Z-
dc.date.available2022-08-06T15:09:36Z-
dc.date.issued2016-07-01-
dc.identifier.issn20700466en
dc.identifier.urihttps://research.matf.bg.ac.rs/handle/123456789/41-
dc.description.abstractThis paper represents an comprehensive overview of the results from three papers where we developed several propositional logics for reasoning about p-adic valued probability.Each of these logics is a sound, complete and decidable extension of classical propositional logic.en
dc.relation.ispartofP-Adic Numbers, Ultrametric Analysis, and Applicationsen_US
dc.subjectcoding informationen
dc.subjectconditional probabilityen
dc.subjectp-adicen
dc.subjectp-adic distancesen
dc.subjectprobability logicen
dc.titlep-Adic probability logicsen_US
dc.typeTexten_US
dc.identifier.doi10.1134/S2070046616030018-
dc.identifier.scopus2-s2.0-84981722685-
dc.identifier.urlhttps://api.elsevier.com/content/abstract/scopus_id/84981722685-
dc.contributor.affiliationAlgebra and Mathematical Logicen_US
dc.relation.firstpage177en_US
dc.relation.lastpage203en_US
dc.relation.volume8en_US
dc.relation.issue3en_US
item.grantfulltextnone-
item.cerifentitytypePublications-
item.openairecristypehttp://purl.org/coar/resource_type/c_18cf-
item.openairetypeText-
item.fulltextNo Fulltext-
crisitem.author.deptAlgebra and Mathematical Logic-
crisitem.author.orcid0000-0003-3832-760X-
Appears in Collections:Research outputs
Show simple item record

SCOPUSTM   
Citations

6
checked on May 1, 2025

Page view(s)

12
checked on Jan 19, 2025

Google ScholarTM

Check


Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.