Please use this identifier to cite or link to this item: https://research.matf.bg.ac.rs/handle/123456789/411
DC FieldValueLanguage
dc.contributor.authorKnežević, Miljanen_US
dc.date.accessioned2022-08-10T20:46:43Z-
dc.date.available2022-08-10T20:46:43Z-
dc.date.issued2015-01-01-
dc.identifier.issn03545180en
dc.identifier.urihttps://research.matf.bg.ac.rs/handle/123456789/411-
dc.description.abstractWe analyze the properties of harmonic quasiconformal mappings and by comparing some suitably chosen conformal metrics defined in the unit disc we obtain some geometrically motivated inequalities for those mappings (see for instance [15, 17, 20]). In particular, we obtain the answers to many questions concerning these classes of functions which are related to the determination of different properties that are of essential importance for validity of the results such as those that generalize famous inequalities of the Schwarz-Pick type. The approach used is geometrical in nature, via analyzing the properties of the Gaussian curvature of the conformal metrics we are dealing with. As a consequence of this approach we give a note to the co-Lipschicity of harmonic quasiconformal self mappings of the unit disc at the origin.en
dc.relation.ispartofFilomaten
dc.subjectHarmonic mappingsen
dc.subjectHyperbolic metricsen
dc.subjectQuasi-isometryen
dc.subjectQuasiconformal mappingsen
dc.titleA Note on the Harmonic Quasiconformal Diffeomorphisms of the Unit Discen_US
dc.typeArticleen_US
dc.identifier.doi10.2298/FIL1502335K-
dc.identifier.scopus2-s2.0-84928943569-
dc.identifier.urlhttps://api.elsevier.com/content/abstract/scopus_id/84928943569-
dc.contributor.affiliationReal and Complex Analysisen_US
dc.relation.firstpage335en
dc.relation.lastpage341en
dc.relation.volume29en
dc.relation.issue2en
item.fulltextNo Fulltext-
item.openairetypeArticle-
item.grantfulltextnone-
item.openairecristypehttp://purl.org/coar/resource_type/c_18cf-
item.cerifentitytypePublications-
crisitem.author.deptReal and Complex Analysis-
crisitem.author.orcid0009-0000-4055-1227-
Appears in Collections:Research outputs
Show simple item record

SCOPUSTM   
Citations

4
checked on Nov 11, 2024

Page view(s)

7
checked on Nov 14, 2024

Google ScholarTM

Check

Altmetric

Altmetric


Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.