Please use this identifier to cite or link to this item: https://research.matf.bg.ac.rs/handle/123456789/40
DC FieldValueLanguage
dc.contributor.authorDjordjević, Radosaven_US
dc.contributor.authorRistić, Vladimiren_US
dc.contributor.authorIkodinović, Nebojšaen_US
dc.date.accessioned2022-08-06T15:09:36Z-
dc.date.available2022-08-06T15:09:36Z-
dc.date.issued2016-01-01-
dc.identifier.issn03501302en
dc.identifier.urihttps://research.matf.bg.ac.rs/handle/123456789/40-
dc.description.abstractWe introduce an infinitary logic LA(On, Cn)n∈ω which is an extension of L obtained by adding new quantifiers On and Cn, for every n ∈ ω The corresponding models are topological class-spaces. An axiomatization is given and the completeness theorem is proved.en_US
dc.language.isoenen_US
dc.publisherBeograd : Matematički institut SANUen_US
dc.relation.ispartofPublications de l'Institut Mathematiqueen_US
dc.subjectCompletenessen_US
dc.subjectInfinitary logicen_US
dc.subjectTopological class-spacesen_US
dc.titleCompleteness theorem for continuous functions and product class-topologiesen_US
dc.typeArticleen_US
dc.identifier.doi10.2298/PIM160525001D-
dc.identifier.scopus2-s2.0-85002637453-
dc.identifier.isi000398279100009-
dc.identifier.urlhttps://api.elsevier.com/content/abstract/scopus_id/85002637453-
dc.contributor.affiliationAlgebra and Mathematical Logicen_US
dc.relation.issn0350-1302en_US
dc.description.rankM23en_US
dc.relation.firstpage119en_US
dc.relation.lastpage129en_US
dc.relation.volume100en_US
dc.relation.issue114en_US
item.languageiso639-1en-
item.cerifentitytypePublications-
item.openairetypeArticle-
item.openairecristypehttp://purl.org/coar/resource_type/c_18cf-
item.fulltextNo Fulltext-
item.grantfulltextnone-
crisitem.author.deptAlgebra and Mathematical Logic-
crisitem.author.orcid0000-0003-3832-760X-
Appears in Collections:Research outputs
Show simple item record

Page view(s)

14
checked on Jan 19, 2025

Google ScholarTM

Check

Altmetric

Altmetric


Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.