Please use this identifier to cite or link to this item: https://research.matf.bg.ac.rs/handle/123456789/405
DC FieldValueLanguage
dc.contributor.authorKečkić, Dragoljuben_US
dc.date.accessioned2022-08-10T20:28:31Z-
dc.date.available2022-08-10T20:28:31Z-
dc.date.issued2000-01-01-
dc.identifier.issn00029939en
dc.identifier.urihttps://research.matf.bg.ac.rs/handle/123456789/405-
dc.description.abstractWe prove the orthogonality of the range and the kernel of an important class of elementary operators with respect to the unitarily invariant norms associated with norm ideals of operators. This class consists of those mappings E : B(H) → B(H), E(X) = AXB + CXD, where B(H) is the algebra of all bounded Hubert space operators, and A, B, C, D are normal operators, such that AC = CA, BD = DB and ker A∩ker C = ker B∩ker D = {0}. Also we establish that this class is, in a certain sense, the widest class for which such an orthogonality result is valid. Some other related results are also given. ©2000 American Mathematical Society.en
dc.relation.ispartofProceedings of the American Mathematical Societyen
dc.subjectElementary operatorsen
dc.subjectOrthogonality of subspacesen
dc.subjectUnitarily invariant norms, normal operatoren
dc.titleOrthogonality of the range and the kernel of some elementary operatorsen_US
dc.typeArticleen_US
dc.identifier.doi10.1090/s0002-9939-00-05890-1-
dc.identifier.scopus2-s2.0-23044524580-
dc.identifier.urlhttps://api.elsevier.com/content/abstract/scopus_id/23044524580-
dc.contributor.affiliationMathematical Analysisen_US
dc.relation.firstpage3369en
dc.relation.lastpage3377en
dc.relation.volume128en
dc.relation.issue11en
item.fulltextNo Fulltext-
item.openairetypeArticle-
item.grantfulltextnone-
item.openairecristypehttp://purl.org/coar/resource_type/c_18cf-
item.cerifentitytypePublications-
crisitem.author.orcid0000-0001-7981-4696-
Appears in Collections:Research outputs
Show simple item record

SCOPUSTM   
Citations

29
checked on Nov 14, 2024

Page view(s)

9
checked on Nov 14, 2024

Google ScholarTM

Check

Altmetric

Altmetric


Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.