Please use this identifier to cite or link to this item: https://research.matf.bg.ac.rs/handle/123456789/401
DC FieldValueLanguage
dc.contributor.authorKečkić, Dragoljuben_US
dc.date.accessioned2022-08-10T20:28:30Z-
dc.date.available2022-08-10T20:28:30Z-
dc.date.issued2019-01-01-
dc.identifier.issn17358787en
dc.identifier.urihttps://research.matf.bg.ac.rs/handle/123456789/401-
dc.description.abstractLet G be a compact Abelian group, let μ be the corresponding Haar measure, and let Ĝ be the Pontryagin dual of G. Furthermore, let C p denote the Schatten class of operators on some separable infinite-dimensional Hilbert space, and let L p (G; C p ) denote the corresponding Bochner space. If G ∋ θ ↦ A θ is the mapping belonging to L p (G; C p ), then If G is a finite group, then the previous equations comprise several generalizations of Clarkson-McCarthy inequalities obtained earlier (e.g., G = Z n or G = Z 2n ), as well as the original inequalities, for G = Z 2 . We also obtain other related inequalities.en
dc.relation.ispartofBanach Journal of Mathematical Analysisen
dc.subjectAbstract Fourier seriesen
dc.subjectClarkson inequalitiesen
dc.subjectFinite groupen
dc.subjectLittlewood matricesen
dc.subjectUnitarily invariant normen
dc.titleContinuous generalization of Clarkson-Mccarthy inequalitiesen_US
dc.typeArticleen_US
dc.identifier.doi10.1215/17358787-2018-0014-
dc.identifier.scopus2-s2.0-85064939844-
dc.identifier.urlhttps://api.elsevier.com/content/abstract/scopus_id/85064939844-
dc.contributor.affiliationMathematical Analysisen_US
dc.relation.firstpage26en
dc.relation.lastpage46en
dc.relation.volume13en
dc.relation.issue1en
item.openairetypeArticle-
item.cerifentitytypePublications-
item.fulltextNo Fulltext-
item.openairecristypehttp://purl.org/coar/resource_type/c_18cf-
item.grantfulltextnone-
crisitem.author.deptMathematical Analysis-
crisitem.author.orcid0000-0001-7981-4696-
Appears in Collections:Research outputs
Show simple item record

SCOPUSTM   
Citations

2
checked on Mar 30, 2025

Page view(s)

10
checked on Jan 19, 2025

Google ScholarTM

Check

Altmetric

Altmetric


Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.