Please use this identifier to cite or link to this item: https://research.matf.bg.ac.rs/handle/123456789/401
DC FieldValueLanguage
dc.contributor.authorKečkić, Dragoljuben_US
dc.date.accessioned2022-08-10T20:28:30Z-
dc.date.available2022-08-10T20:28:30Z-
dc.date.issued2019-01-01-
dc.identifier.issn17358787en
dc.identifier.urihttps://research.matf.bg.ac.rs/handle/123456789/401-
dc.description.abstractLet G be a compact Abelian group, let μ be the corresponding Haar measure, and let Ĝ be the Pontryagin dual of G. Furthermore, let C p denote the Schatten class of operators on some separable infinite-dimensional Hilbert space, and let L p (G; C p ) denote the corresponding Bochner space. If G ∋ θ ↦ A θ is the mapping belonging to L p (G; C p ), then If G is a finite group, then the previous equations comprise several generalizations of Clarkson-McCarthy inequalities obtained earlier (e.g., G = Z n or G = Z 2n ), as well as the original inequalities, for G = Z 2 . We also obtain other related inequalities.en
dc.relation.ispartofBanach Journal of Mathematical Analysisen
dc.subjectAbstract Fourier seriesen
dc.subjectClarkson inequalitiesen
dc.subjectFinite groupen
dc.subjectLittlewood matricesen
dc.subjectUnitarily invariant normen
dc.titleContinuous generalization of Clarkson-Mccarthy inequalitiesen_US
dc.typeArticleen_US
dc.identifier.doi10.1215/17358787-2018-0014-
dc.identifier.scopus2-s2.0-85064939844-
dc.identifier.urlhttps://api.elsevier.com/content/abstract/scopus_id/85064939844-
dc.contributor.affiliationMathematical Analysisen_US
dc.relation.firstpage26en
dc.relation.lastpage46en
dc.relation.volume13en
dc.relation.issue1en
item.fulltextNo Fulltext-
item.openairetypeArticle-
item.grantfulltextnone-
item.openairecristypehttp://purl.org/coar/resource_type/c_18cf-
item.cerifentitytypePublications-
crisitem.author.orcid0000-0001-7981-4696-
Appears in Collections:Research outputs
Show simple item record

SCOPUSTM   
Citations

2
checked on Nov 11, 2024

Page view(s)

9
checked on Nov 14, 2024

Google ScholarTM

Check

Altmetric

Altmetric


Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.