Please use this identifier to cite or link to this item:
https://research.matf.bg.ac.rs/handle/123456789/39
DC Field | Value | Language |
---|---|---|
dc.contributor.author | Ikodinović, Nebojša | en_US |
dc.contributor.author | Ognjanović, Zoran | en_US |
dc.contributor.author | Perović, Aleksandar | en_US |
dc.contributor.author | Rašković, Miodrag | en_US |
dc.date.accessioned | 2022-08-06T15:09:36Z | - |
dc.date.available | 2022-08-06T15:09:36Z | - |
dc.date.issued | 2014-12-01 | - |
dc.identifier.issn | 0888613X | en |
dc.identifier.uri | https://research.matf.bg.ac.rs/handle/123456789/39 | - |
dc.description.abstract | Our aim is to present what we call the lower and the upper hierarchy of the real valued probability logics with probability operators of the form P≥s and QF, where s∈[0,1]Q=[0,1] Q and F is a recursive subset of [0,1]Q. The intended meaning of P≥sα is that the probability of α is at least s, while the intended meaning of QFα is that the probability of α is in F. | en |
dc.relation.ispartof | International Journal of Approximate Reasoning | en_US |
dc.subject | Completeness theorems | en |
dc.subject | Definability of probability operators | en |
dc.subject | Hierarchy of probability logics | en |
dc.subject | Probability logic | en |
dc.title | Hierarchies of probabilistic logics | en_US |
dc.type | Article | en_US |
dc.identifier.doi | 10.1016/j.ijar.2014.03.006 | - |
dc.identifier.scopus | 2-s2.0-84908357449 | - |
dc.identifier.url | https://api.elsevier.com/content/abstract/scopus_id/84908357449 | - |
dc.contributor.affiliation | Algebra and Mathematical Logic | en_US |
dc.relation.firstpage | 1830 | en_US |
dc.relation.lastpage | 1842 | en_US |
dc.relation.volume | 55 | en_US |
dc.relation.issue | 9 | en_US |
item.grantfulltext | none | - |
item.fulltext | No Fulltext | - |
item.openairetype | Article | - |
item.openairecristype | http://purl.org/coar/resource_type/c_18cf | - |
item.cerifentitytype | Publications | - |
crisitem.author.orcid | 0000-0003-3832-760X | - |
Appears in Collections: | Research outputs |
SCOPUSTM
Citations
6
checked on Mar 30, 2025
Page view(s)
11
checked on Jan 19, 2025
Google ScholarTM
Check
Altmetric
Altmetric
Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.