Please use this identifier to cite or link to this item: https://research.matf.bg.ac.rs/handle/123456789/399
DC FieldValueLanguage
dc.contributor.authorKečkić, Dragoljuben_US
dc.date.accessioned2022-08-10T20:28:30Z-
dc.date.available2022-08-10T20:28:30Z-
dc.date.issued2004-01-01-
dc.identifier.issn03794024en
dc.identifier.urihttps://research.matf.bg.ac.rs/handle/123456789/399-
dc.description.abstractWe introduce φ-Gateaux derivative, and use it to give the necessary and sufficient conditions for the operator Y to be orthogonal (in the sense of James) to the operator X, in both spaces script G sign 1 and script G sign ∞ (nuclear and compact operators on a Hilbert space). Further, we apply these results to prove that there exists a normal derivation Δ A such that ran Δ A ⊕ ker Δ A ≠ script G sign A1 , and a related result concerning script G sign ∞ .en_US
dc.language.isoenen_US
dc.publisherBucharest : Theta Foundationen_US
dc.relation.ispartofJournal of Operator Theoryen_US
dc.subjectDerivationen_US
dc.subjectElementary operatoren_US
dc.subjectGateaux derivativeen_US
dc.subjectOrthogonality in Banach spacesen_US
dc.subjectSchatten idealsen_US
dc.titleOrthogonality in script G sign <inf>1</inf> and script G sign <inf>∞</inf> spaces and normal derivationsen_US
dc.typeArticleen_US
dc.identifier.scopus2-s2.0-2442501701-
dc.identifier.isi000221271800006-
dc.identifier.urlhttps://api.elsevier.com/content/abstract/scopus_id/2442501701-
dc.contributor.affiliationMathematical Analysisen_US
dc.relation.issn0379-4024en_US
dc.description.rankM21en_US
dc.relation.firstpage89en_US
dc.relation.lastpage104en_US
dc.relation.volume51en_US
dc.relation.issue1en_US
item.openairetypeArticle-
item.languageiso639-1en-
item.grantfulltextnone-
item.openairecristypehttp://purl.org/coar/resource_type/c_18cf-
item.fulltextNo Fulltext-
item.cerifentitytypePublications-
crisitem.author.deptMathematical Analysis-
crisitem.author.orcid0000-0001-7981-4696-
Appears in Collections:Research outputs
Show simple item record

SCOPUSTM   
Citations

22
checked on Dec 3, 2025

Page view(s)

8
checked on Jan 19, 2025

Google ScholarTM

Check


Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.