Please use this identifier to cite or link to this item:
https://research.matf.bg.ac.rs/handle/123456789/399
DC Field | Value | Language |
---|---|---|
dc.contributor.author | Kečkić, Dragoljub | en_US |
dc.date.accessioned | 2022-08-10T20:28:30Z | - |
dc.date.available | 2022-08-10T20:28:30Z | - |
dc.date.issued | 2004-01-01 | - |
dc.identifier.issn | 03794024 | en |
dc.identifier.uri | https://research.matf.bg.ac.rs/handle/123456789/399 | - |
dc.description.abstract | We introduce φ-Gateaux derivative, and use it to give the necessary and sufficient conditions for the operator Y to be orthogonal (in the sense of James) to the operator X, in both spaces script G sign 1 and script G sign ∞ (nuclear and compact operators on a Hilbert space). Further, we apply these results to prove that there exists a normal derivation Δ A such that ran Δ A ⊕ ker Δ A ≠ script G sign A1 , and a related result concerning script G sign ∞ . | en |
dc.relation.ispartof | Journal of Operator Theory | en |
dc.subject | Derivation | en |
dc.subject | Elementary operator | en |
dc.subject | Gateaux derivative | en |
dc.subject | Orthogonality in Banach spaces | en |
dc.subject | Schatten ideals | en |
dc.title | Orthogonality in script G sign <inf>1</inf> and script G sign <inf>∞</inf> spaces and normal derivations | en_US |
dc.type | Article | en_US |
dc.identifier.scopus | 2-s2.0-2442501701 | - |
dc.identifier.url | https://api.elsevier.com/content/abstract/scopus_id/2442501701 | - |
dc.contributor.affiliation | Mathematical Analysis | en_US |
dc.relation.firstpage | 89 | en |
dc.relation.lastpage | 104 | en |
dc.relation.volume | 51 | en |
dc.relation.issue | 1 | en |
item.fulltext | No Fulltext | - |
item.openairetype | Article | - |
item.grantfulltext | none | - |
item.openairecristype | http://purl.org/coar/resource_type/c_18cf | - |
item.cerifentitytype | Publications | - |
crisitem.author.orcid | 0000-0001-7981-4696 | - |
Appears in Collections: | Research outputs |
SCOPUSTM
Citations
21
checked on Nov 8, 2024
Page view(s)
7
checked on Nov 14, 2024
Google ScholarTM
Check
Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.