Please use this identifier to cite or link to this item:
https://research.matf.bg.ac.rs/handle/123456789/398
DC Field | Value | Language |
---|---|---|
dc.contributor.author | Kečkić, Dragoljub | en_US |
dc.date.accessioned | 2022-08-10T20:28:30Z | - |
dc.date.available | 2022-08-10T20:28:30Z | - |
dc.date.issued | 2020-04-01 | - |
dc.identifier.issn | 14528630 | en |
dc.identifier.uri | https://research.matf.bg.ac.rs/handle/123456789/398 | - |
dc.description.abstract | We apply the inequality |<x,y>| ≤ ||x|| <y,y>1/2 to give an easy and elementary proof of many operator inequalities for elementary operators and inner type product integral transformers obtained during last two decades, which also generalizes many of them. | en |
dc.relation.ispartof | Applicable Analysis and Discrete Mathematics | en |
dc.subject | Cauchy schwartz inequality | en |
dc.subject | Elementary operator | en |
dc.subject | Inner product type transformers | en |
dc.subject | Unitarily invariant norm | en |
dc.title | The applications of Cauchy-Schwartz inequality for hilbert modules to elementary operators and I.P.T.I. transformers | en_US |
dc.type | Article | en_US |
dc.identifier.doi | 10.2298/AADM180123002K | - |
dc.identifier.scopus | 2-s2.0-85092248844 | - |
dc.identifier.url | https://api.elsevier.com/content/abstract/scopus_id/85092248844 | - |
dc.contributor.affiliation | Mathematical Analysis | en_US |
dc.relation.firstpage | 169 | en |
dc.relation.lastpage | 182 | en |
dc.relation.volume | 14 | en |
dc.relation.issue | 1 | en |
item.grantfulltext | none | - |
item.openairecristype | http://purl.org/coar/resource_type/c_18cf | - |
item.openairetype | Article | - |
item.fulltext | No Fulltext | - |
item.cerifentitytype | Publications | - |
crisitem.author.dept | Mathematical Analysis | - |
crisitem.author.orcid | 0000-0001-7981-4696 | - |
Appears in Collections: | Research outputs |
SCOPUSTM
Citations
1
checked on Mar 28, 2025
Page view(s)
25
checked on Jan 19, 2025
Google ScholarTM
Check
Altmetric
Altmetric
Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.