Please use this identifier to cite or link to this item: https://research.matf.bg.ac.rs/handle/123456789/398
DC FieldValueLanguage
dc.contributor.authorKečkić, Dragoljuben_US
dc.date.accessioned2022-08-10T20:28:30Z-
dc.date.available2022-08-10T20:28:30Z-
dc.date.issued2020-04-01-
dc.identifier.issn14528630en
dc.identifier.urihttps://research.matf.bg.ac.rs/handle/123456789/398-
dc.description.abstractWe apply the inequality |<x,y>| ≤ ||x|| <y,y>1/2 to give an easy and elementary proof of many operator inequalities for elementary operators and inner type product integral transformers obtained during last two decades, which also generalizes many of them.en
dc.relation.ispartofApplicable Analysis and Discrete Mathematicsen
dc.subjectCauchy schwartz inequalityen
dc.subjectElementary operatoren
dc.subjectInner product type transformersen
dc.subjectUnitarily invariant normen
dc.titleThe applications of Cauchy-Schwartz inequality for hilbert modules to elementary operators and I.P.T.I. transformersen_US
dc.typeArticleen_US
dc.identifier.doi10.2298/AADM180123002K-
dc.identifier.scopus2-s2.0-85092248844-
dc.identifier.urlhttps://api.elsevier.com/content/abstract/scopus_id/85092248844-
dc.contributor.affiliationMathematical Analysisen_US
dc.relation.firstpage169en
dc.relation.lastpage182en
dc.relation.volume14en
dc.relation.issue1en
item.fulltextNo Fulltext-
item.openairetypeArticle-
item.grantfulltextnone-
item.openairecristypehttp://purl.org/coar/resource_type/c_18cf-
item.cerifentitytypePublications-
crisitem.author.orcid0000-0001-7981-4696-
Appears in Collections:Research outputs
Show simple item record

Page view(s)

20
checked on Nov 14, 2024

Google ScholarTM

Check

Altmetric

Altmetric


Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.