Please use this identifier to cite or link to this item: https://research.matf.bg.ac.rs/handle/123456789/397
DC FieldValueLanguage
dc.contributor.authorKečkić, Dragoljuben_US
dc.date.accessioned2022-08-10T20:28:29Z-
dc.date.available2022-08-10T20:28:29Z-
dc.date.issued2013-03-01-
dc.identifier.issn00243795en
dc.identifier.urihttps://research.matf.bg.ac.rs/handle/123456789/397-
dc.description.abstractLet Λ:B(X)→B(X), Λ(S)=∑j=0n-1AjSBJ be elementary operator, where B(X) is the algebra of all bounded linear operators on a Banach space. For Aj and Bj prenormal, i.e. Aj=Hj+iKj, with ∥exp( itHj)∥, ∥expitKj)∥ bounded, H jKj=KjHj, let Λ(S) =∑j=0n-1AjSBjbe its generalized adjoint operator, where Aj= Hj-iKj. Let kerCΛ={S∈B(X)|∑j= 0n-1AjSBj+k=0,forallk}, where for j≥n we take Bj=Bj-n. We prove that for two commutative families of prenormal operators Aj,Bj, there holds kerCΛ=kerCΛ. © 2012 Elsevier Inc. All rights reserved.en
dc.relation.ispartofLinear Algebra and Its Applicationsen
dc.subjectElementary operatorsen
dc.subjectFuglede-Putnam theoremen
dc.titleCyclic kernels of elementary operators on Banach spacesen_US
dc.typeArticleen_US
dc.identifier.doi10.1016/j.laa.2012.10.035-
dc.identifier.scopus2-s2.0-84872158892-
dc.identifier.urlhttps://api.elsevier.com/content/abstract/scopus_id/84872158892-
dc.contributor.affiliationMathematical Analysisen_US
dc.relation.firstpage2628en
dc.relation.lastpage2633en
dc.relation.volume438en
dc.relation.issue5en
item.fulltextNo Fulltext-
item.openairetypeArticle-
item.grantfulltextnone-
item.openairecristypehttp://purl.org/coar/resource_type/c_18cf-
item.cerifentitytypePublications-
crisitem.author.orcid0000-0001-7981-4696-
Appears in Collections:Research outputs
Show simple item record

Page view(s)

10
checked on Nov 14, 2024

Google ScholarTM

Check

Altmetric

Altmetric


Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.