Please use this identifier to cite or link to this item:
https://research.matf.bg.ac.rs/handle/123456789/397
DC Field | Value | Language |
---|---|---|
dc.contributor.author | Kečkić, Dragoljub | en_US |
dc.date.accessioned | 2022-08-10T20:28:29Z | - |
dc.date.available | 2022-08-10T20:28:29Z | - |
dc.date.issued | 2013-03-01 | - |
dc.identifier.issn | 00243795 | en |
dc.identifier.uri | https://research.matf.bg.ac.rs/handle/123456789/397 | - |
dc.description.abstract | Let Λ:B(X)→B(X), Λ(S)=∑j=0n-1AjSBJ be elementary operator, where B(X) is the algebra of all bounded linear operators on a Banach space. For Aj and Bj prenormal, i.e. Aj=Hj+iKj, with ∥exp( itHj)∥, ∥expitKj)∥ bounded, H jKj=KjHj, let Λ(S) =∑j=0n-1AjSBjbe its generalized adjoint operator, where Aj= Hj-iKj. Let kerCΛ={S∈B(X)|∑j= 0n-1AjSBj+k=0,forallk}, where for j≥n we take Bj=Bj-n. We prove that for two commutative families of prenormal operators Aj,Bj, there holds kerCΛ=kerCΛ. © 2012 Elsevier Inc. All rights reserved. | en |
dc.relation.ispartof | Linear Algebra and Its Applications | en |
dc.subject | Elementary operators | en |
dc.subject | Fuglede-Putnam theorem | en |
dc.title | Cyclic kernels of elementary operators on Banach spaces | en_US |
dc.type | Article | en_US |
dc.identifier.doi | 10.1016/j.laa.2012.10.035 | - |
dc.identifier.scopus | 2-s2.0-84872158892 | - |
dc.identifier.url | https://api.elsevier.com/content/abstract/scopus_id/84872158892 | - |
dc.contributor.affiliation | Mathematical Analysis | en_US |
dc.relation.firstpage | 2628 | en |
dc.relation.lastpage | 2633 | en |
dc.relation.volume | 438 | en |
dc.relation.issue | 5 | en |
item.fulltext | No Fulltext | - |
item.openairetype | Article | - |
item.grantfulltext | none | - |
item.openairecristype | http://purl.org/coar/resource_type/c_18cf | - |
item.cerifentitytype | Publications | - |
crisitem.author.orcid | 0000-0001-7981-4696 | - |
Appears in Collections: | Research outputs |
Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.