Please use this identifier to cite or link to this item: https://research.matf.bg.ac.rs/handle/123456789/396
DC FieldValueLanguage
dc.contributor.authorKečkić, Dragoljuben_US
dc.contributor.authorLazović, Zlatkoen_US
dc.date.accessioned2022-08-10T20:28:29Z-
dc.date.available2022-08-10T20:28:29Z-
dc.date.issued2017-01-01-
dc.identifier.issn00016969en
dc.identifier.urihttps://research.matf.bg.ac.rs/handle/123456789/396-
dc.description.abstractThe aim of this note is to generalize the notion of Fredholm operator to an arbitrary C-Algebra. Namely we define "finite type" elements in an axiomatic way, and also we define a Fredholm type element a as such an element of a given C-Algebra for which there are finite type elements p and q such that (1-q)a(1-p) is "invertible". We derive an index theorem for such operators. In Applications we show that many well-known operators are special cases of our theory. Those include: classical Fredholm operators on a Hilbert space, Fredholm operators in the sense of Breuer, Atiyah and Singer on a properly infinite von Neumann algebra, and Fredholm operators on Hilbert C-modules over a unital C-Algebra in the sense of Mishchenko and Fomenko.en
dc.relation.ispartofActa Scientiarum Mathematicarumen
dc.subjectC-Algebraen
dc.subjectFredholm operatorsen
dc.subjectGrant #174034en
dc.subjectIndex. The authors were supported in part by the Ministry of education and scienceen
dc.subjectK groupen
dc.subjectRepublic of Serbiaen
dc.titleFredholm operators on C-Algebrasen_US
dc.typeArticleen_US
dc.identifier.doi10.14232/actasm-015-526-5-
dc.identifier.scopus2-s2.0-85037367084-
dc.identifier.urlhttps://api.elsevier.com/content/abstract/scopus_id/85037367084-
dc.contributor.affiliationMathematical Analysisen_US
dc.relation.firstpage629en
dc.relation.lastpage655en
dc.relation.volume83en
dc.relation.issue3-4en
item.fulltextNo Fulltext-
item.openairetypeArticle-
item.grantfulltextnone-
item.openairecristypehttp://purl.org/coar/resource_type/c_18cf-
item.cerifentitytypePublications-
crisitem.author.orcid0000-0001-7981-4696-
Appears in Collections:Research outputs
Show simple item record

SCOPUSTM   
Citations

3
checked on Nov 8, 2024

Page view(s)

6
checked on Nov 14, 2024

Google ScholarTM

Check

Altmetric

Altmetric


Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.