Please use this identifier to cite or link to this item: https://research.matf.bg.ac.rs/handle/123456789/394
DC FieldValueLanguage
dc.contributor.authorArandelović, Ivan D.en_US
dc.contributor.authorKečkić, Dragoljuben_US
dc.date.accessioned2022-08-10T20:28:29Z-
dc.date.available2022-08-10T20:28:29Z-
dc.date.issued2010-11-22-
dc.identifier.issn16871820en
dc.identifier.urihttps://research.matf.bg.ac.rs/handle/123456789/394-
dc.description.abstractIn the paper by Khojasteh et al. (2010), the authors tried to generalize Branciari's theorem, introducing the new integral type contraction mappings. In this note we give a counterexample on their main statement (Theorem 2.9). Also we give a comment explaining what the mistake in the proof is, and suggesting what conditions might be appropriate in generalizing fixed point results to cone spaces, where the cone is taken from the infinite dimensional space. Copyright © 2010 Ivan D. Arandelovi and Dragoljub J. Keki.en_US
dc.language.isoenen_US
dc.publisherSpringer Openen_US
dc.relation.ispartofFixed Point Theory and Applicationsen_US
dc.titleA counterexample on a theorem by Khojasteh, Goodarzi, and Razanien_US
dc.typeArticleen_US
dc.identifier.doi10.1155/2010/470141-
dc.identifier.scopus2-s2.0-78349283463-
dc.identifier.urlhttps://api.elsevier.com/content/abstract/scopus_id/78349283463-
dc.contributor.affiliationMathematical Analysisen_US
dc.relation.issn1687-1820en_US
dc.description.rankM21a+en_US
dc.relation.firstpageArticle no. 470141en_US
dc.relation.volume2010en_US
item.openairetypeArticle-
item.languageiso639-1en-
item.grantfulltextnone-
item.openairecristypehttp://purl.org/coar/resource_type/c_18cf-
item.fulltextNo Fulltext-
item.cerifentitytypePublications-
crisitem.author.deptMathematical Analysis-
crisitem.author.orcid0000-0001-7981-4696-
Appears in Collections:Research outputs
Show simple item record

SCOPUSTM   
Citations

6
checked on Dec 10, 2025

Page view(s)

11
checked on Jan 19, 2025

Google ScholarTM

Check

Altmetric

Altmetric


Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.