Please use this identifier to cite or link to this item: https://research.matf.bg.ac.rs/handle/123456789/392
DC FieldValueLanguage
dc.contributor.authorKečkić, Dragoljuben_US
dc.contributor.authorLazović, Zlatkoen_US
dc.date.accessioned2022-08-10T20:28:28Z-
dc.date.available2022-08-10T20:28:28Z-
dc.date.issued2019-01-01-
dc.identifier.issn03545180en
dc.identifier.urihttps://research.matf.bg.ac.rs/handle/123456789/392-
dc.description.abstractWe define a measure of noncompactness λ on the standard Hilbert C∗-module l2 (A) over a unital C∗-algebra, such that λ(E) = 0 if and only if E is A-precompact (i.e. it is ε-close to a finitely generated projective submodule for any ε > 0) and derive its properties. Further, we consider the known, Kuratowski, Hausdorff and Istrăţescu measure of noncompactnes on l2 (A) regarded as a locally convex space with respect to a suitable topology, and obtain their properties as well as some relationship between them and introduced measure of noncompactness λ.en
dc.relation.ispartofFilomaten
dc.subjectHilbert moduleen
dc.subjectMeasures of noncompactnessen
dc.subjectUniform spacesen
dc.titleMeasures of noncompactness on the standard hilbert C*-moduleen_US
dc.typeArticleen_US
dc.identifier.doi10.2298/FIL1912683K-
dc.identifier.scopus2-s2.0-85077693648-
dc.identifier.urlhttps://api.elsevier.com/content/abstract/scopus_id/85077693648-
dc.contributor.affiliationMathematical Analysisen_US
dc.relation.firstpage3683en
dc.relation.lastpage3695en
dc.relation.volume33en
dc.relation.issue12en
item.fulltextNo Fulltext-
item.openairetypeArticle-
item.grantfulltextnone-
item.openairecristypehttp://purl.org/coar/resource_type/c_18cf-
item.cerifentitytypePublications-
crisitem.author.orcid0000-0001-7981-4696-
Appears in Collections:Research outputs
Show simple item record

Page view(s)

3
checked on Nov 14, 2024

Google ScholarTM

Check

Altmetric

Altmetric


Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.