Please use this identifier to cite or link to this item: https://research.matf.bg.ac.rs/handle/123456789/392
DC FieldValueLanguage
dc.contributor.authorKečkić, Dragoljuben_US
dc.contributor.authorLazović, Zlatkoen_US
dc.date.accessioned2022-08-10T20:28:28Z-
dc.date.available2022-08-10T20:28:28Z-
dc.date.issued2019-01-01-
dc.identifier.issn03545180en
dc.identifier.urihttps://research.matf.bg.ac.rs/handle/123456789/392-
dc.description.abstractWe define a measure of noncompactness λ on the standard Hilbert C∗-module l2 (A) over a unital C∗-algebra, such that λ(E) = 0 if and only if E is A-precompact (i.e. it is ε-close to a finitely generated projective submodule for any ε > 0) and derive its properties. Further, we consider the known, Kuratowski, Hausdorff and Istrăţescu measure of noncompactnes on l2 (A) regarded as a locally convex space with respect to a suitable topology, and obtain their properties as well as some relationship between them and introduced measure of noncompactness λ.en_US
dc.language.isoenen_US
dc.publisherNiš : Prirodno-matematički fakulteten_US
dc.relation.ispartofFilomaten_US
dc.subjectHilbert moduleen_US
dc.subjectMeasures of noncompactnessen_US
dc.subjectUniform spacesen_US
dc.titleMeasures of noncompactness on the standard hilbert C*-moduleen_US
dc.typeArticleen_US
dc.identifier.doi10.2298/FIL1912683K-
dc.identifier.scopus2-s2.0-85077693648-
dc.identifier.isi000500925900005-
dc.identifier.urlhttps://api.elsevier.com/content/abstract/scopus_id/85077693648-
dc.contributor.affiliationMathematical Analysisen_US
dc.contributor.affiliationMathematical Analysisen_US
dc.relation.issn0354-5180en_US
dc.description.rankM22en_US
dc.relation.firstpage3683en_US
dc.relation.lastpage3695en_US
dc.relation.volume33en_US
dc.relation.issue12en_US
item.openairetypeArticle-
item.fulltextNo Fulltext-
item.openairecristypehttp://purl.org/coar/resource_type/c_18cf-
item.grantfulltextnone-
item.languageiso639-1en-
item.cerifentitytypePublications-
crisitem.author.deptMathematical Analysis-
crisitem.author.deptMathematical Analysis-
crisitem.author.orcid0000-0001-7981-4696-
crisitem.author.orcid0009-0004-6776-7799-
Appears in Collections:Research outputs
Show simple item record

Page view(s)

4
checked on Jan 19, 2025

Google ScholarTM

Check

Altmetric

Altmetric


Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.