Please use this identifier to cite or link to this item:
https://research.matf.bg.ac.rs/handle/123456789/392
DC Field | Value | Language |
---|---|---|
dc.contributor.author | Kečkić, Dragoljub | en_US |
dc.contributor.author | Lazović, Zlatko | en_US |
dc.date.accessioned | 2022-08-10T20:28:28Z | - |
dc.date.available | 2022-08-10T20:28:28Z | - |
dc.date.issued | 2019-01-01 | - |
dc.identifier.issn | 03545180 | en |
dc.identifier.uri | https://research.matf.bg.ac.rs/handle/123456789/392 | - |
dc.description.abstract | We define a measure of noncompactness λ on the standard Hilbert C∗-module l2 (A) over a unital C∗-algebra, such that λ(E) = 0 if and only if E is A-precompact (i.e. it is ε-close to a finitely generated projective submodule for any ε > 0) and derive its properties. Further, we consider the known, Kuratowski, Hausdorff and Istrăţescu measure of noncompactnes on l2 (A) regarded as a locally convex space with respect to a suitable topology, and obtain their properties as well as some relationship between them and introduced measure of noncompactness λ. | en |
dc.relation.ispartof | Filomat | en |
dc.subject | Hilbert module | en |
dc.subject | Measures of noncompactness | en |
dc.subject | Uniform spaces | en |
dc.title | Measures of noncompactness on the standard hilbert C*-module | en_US |
dc.type | Article | en_US |
dc.identifier.doi | 10.2298/FIL1912683K | - |
dc.identifier.scopus | 2-s2.0-85077693648 | - |
dc.identifier.url | https://api.elsevier.com/content/abstract/scopus_id/85077693648 | - |
dc.contributor.affiliation | Mathematical Analysis | en_US |
dc.relation.firstpage | 3683 | en |
dc.relation.lastpage | 3695 | en |
dc.relation.volume | 33 | en |
dc.relation.issue | 12 | en |
item.fulltext | No Fulltext | - |
item.openairetype | Article | - |
item.grantfulltext | none | - |
item.openairecristype | http://purl.org/coar/resource_type/c_18cf | - |
item.cerifentitytype | Publications | - |
crisitem.author.orcid | 0000-0001-7981-4696 | - |
Appears in Collections: | Research outputs |
Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.