Please use this identifier to cite or link to this item: https://research.matf.bg.ac.rs/handle/123456789/391
DC FieldValueLanguage
dc.contributor.authorKečkić, Dragoljuben_US
dc.contributor.authorVujošević, Biljanaen_US
dc.date.accessioned2022-08-10T20:27:36Z-
dc.date.available2022-08-10T20:27:36Z-
dc.date.issued2015-01-01-
dc.identifier.issn03545180-
dc.identifier.urihttps://research.matf.bg.ac.rs/handle/123456789/391-
dc.description.abstractIn this note we prove that the set of all uniformly continuous units on a product system over a C<sup>∗</sup> algebra B can be endowed with a structure of left-right B - B Hilbert module after identifying similar units by the suitable equivalence relation. We use this construction to define the index of the initial product system, and prove that it is a generalization of earlier defined indices by Arveson (in the case B = C) and Skeide (in the case of spatial product system). We prove that such defined index is a covariant functor from the category of continuous product systems to the category of B bimodules. We also prove that the index is subadditive with respect to the outer tensor product of product systems, and prove additional properties of the index of product systems that can be embedded into a spatial one.en_US
dc.relation.ispartofFilomaten_US
dc.subjectHilbert moduleen_US
dc.subjectIndexen_US
dc.subjectNoncommutative dynamicsen_US
dc.subjectProduct systemen_US
dc.subjectQuantum probabilityen_US
dc.titleOn the index of product systems of hilbert modulesen_US
dc.typeArticleen_US
dc.identifier.doi10.2298/FIL1505093K-
dc.identifier.scopus2-s2.0-84929247717-
dc.identifier.urlhttps://api.elsevier.com/content/abstract/scopus_id/84929247717-
dc.contributor.affiliationMathematical Analysisen_US
dc.contributor.affiliationMathematical Analysisen_US
dc.relation.firstpage1093en_US
dc.relation.lastpage1111en_US
dc.relation.volume29en_US
dc.relation.issue5en_US
item.fulltextNo Fulltext-
item.openairetypeArticle-
item.grantfulltextnone-
item.openairecristypehttp://purl.org/coar/resource_type/c_18cf-
item.cerifentitytypePublications-
crisitem.author.deptMathematical Analysis-
crisitem.author.orcid0000-0001-7981-4696-
crisitem.author.orcid0000-0002-6910-6810-
Appears in Collections:Research outputs
Show simple item record

SCOPUSTM   
Citations

2
checked on Nov 9, 2024

Page view(s)

12
checked on Nov 14, 2024

Google ScholarTM

Check

Altmetric

Altmetric


Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.