Please use this identifier to cite or link to this item: https://research.matf.bg.ac.rs/handle/123456789/38
DC FieldValueLanguage
dc.contributor.authorIkodinović, Nebojšaen_US
dc.contributor.authorOgnjanović, Zoranen_US
dc.contributor.authorPerović, Aleksandaren_US
dc.contributor.authorRašković, Miodragen_US
dc.date.accessioned2022-08-06T15:09:36Z-
dc.date.available2022-08-06T15:09:36Z-
dc.date.issued2020-04-01-
dc.identifier.issn01680072en
dc.identifier.urihttps://research.matf.bg.ac.rs/handle/123456789/38-
dc.description.abstractWe study propositional probabilistic logics (LPP–logics) with probability operators of the form P≥r (“the probability is at least r”) with σ–additive semantics. For regular infinite cardinals κ and λ, the probabilistic logic LPPκ,λ has λ propositional variables, allows conjunctions of <κ formulas, and allows iterations of probability operators. LPPκ,λ,2 denotes the fragment of LPPκ,λ where iterations of probability operators is not allowed. Besides the well known non-compactness of LPP–logics, we show that LPPκ,λ,2–logics are not countably compact for any λ≥ω1 and any κ, and that are not 2ℵ0+–compact for κ≥ω1 and any λ. We prove the equivalence of our adaptation of the Hoover's continuity rule (Rule (5) in [13]) and Goldblat's Countable Additivity Rule [9] and show their necessity for complete axiomatization with respect to the class of all σ–additive models. The main result is the strong completeness theorem for countable fragments LPPA and LPPA,2 of LPPω1,ω.en
dc.relation.ispartofAnnals of Pure and Applied Logicen_US
dc.subjectCompletenessen
dc.subjectProbability logicen
dc.subjectSigma-additivityen
dc.titleCompleteness theorems for σ–additive probabilistic semanticsen_US
dc.typeArticleen_US
dc.identifier.doi10.1016/j.apal.2019.102755-
dc.identifier.scopus2-s2.0-85077989477-
dc.identifier.urlhttps://api.elsevier.com/content/abstract/scopus_id/85077989477-
dc.contributor.affiliationAlgebra and Mathematical Logicen_US
dc.relation.volume171en_US
dc.relation.issue4en_US
item.fulltextNo Fulltext-
item.openairecristypehttp://purl.org/coar/resource_type/c_18cf-
item.cerifentitytypePublications-
item.grantfulltextnone-
item.openairetypeArticle-
crisitem.author.deptAlgebra and Mathematical Logic-
crisitem.author.orcid0000-0003-3832-760X-
Appears in Collections:Research outputs
Show simple item record

SCOPUSTM   
Citations

4
checked on Dec 20, 2024

Page view(s)

25
checked on Dec 25, 2024

Google ScholarTM

Check

Altmetric

Altmetric


Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.