Please use this identifier to cite or link to this item: https://research.matf.bg.ac.rs/handle/123456789/387
DC FieldValueLanguage
dc.contributor.authorMiljkovic, Tatjanaen_US
dc.contributor.authorCausey, Ryanen_US
dc.contributor.authorJovanović, Milanen_US
dc.date.accessioned2022-08-10T20:05:38Z-
dc.date.available2022-08-10T20:05:38Z-
dc.date.issued2022-
dc.identifier.issn03610918en
dc.identifier.urihttps://research.matf.bg.ac.rs/handle/123456789/387-
dc.description.abstractRecent research in the area of univariate mixture modeling indicated that the finite mixture models based on Burr and Inverse Burr component distributions perform well in the modeling of heavy-tail insurance data. Mixture models are able to capture the multimodality which is quite a common characteristic of insurance losses. Through an extensive simulation study, we assess the performance of three different methods in building the confidence intervals for high quantiles of the mixtures of Burr and Inverse Burr distributions. First, we provide mathematical justification for linking the tail of the k-Burr and k-Inverse Burr mixtures to the maximum domain of attraction of the Fréchet distribution which allows us to employ the Generalized Pareto Distribution (GPD) in the estimation of high quantiles and their corresponding confidence intervals. Then, we compare these results to those obtained using order statistics and the bootstrap methods. We also modified the existing Peak Over Threshold (POT) algorithm for the efficient computation of the confidence intervals in the upper tail of these mixture models. A real data set on Danish Fire Losses is used to illustrate the application of these methods in practice.en_US
dc.language.isoenen_US
dc.publisherTaylor and Francisen_US
dc.relation.ispartofCommunications in Statistics: Simulation and Computationen_US
dc.subject60G70en_US
dc.subject62F25en_US
dc.subjectExtreme value theoryen_US
dc.subjectFréchet distributionen_US
dc.subjectGeneralized Pareto Distributionen_US
dc.subjectMixture modelsen_US
dc.subjectQuantilesen_US
dc.titleAssessing the performance of confidence intervals for high quantiles of Burr XII and Inverse Burr mixturesen_US
dc.typeArticleen_US
dc.identifier.doi10.1080/03610918.2020.1747075-
dc.identifier.scopus2-s2.0-85082802779-
dc.identifier.isi000523022400001-
dc.identifier.urlhttps://api.elsevier.com/content/abstract/scopus_id/85082802779-
dc.contributor.affiliationProbability and Mathematical Statisticsen_US
dc.relation.issn0361-0918en_US
dc.description.rankM22en_US
dc.relation.firstpage4677en_US
dc.relation.lastpage4699en_US
dc.relation.volume51en_US
dc.relation.issue8en_US
item.languageiso639-1en-
item.cerifentitytypePublications-
item.openairetypeArticle-
item.openairecristypehttp://purl.org/coar/resource_type/c_18cf-
item.fulltextNo Fulltext-
item.grantfulltextnone-
crisitem.author.deptProbability and Statistics-
crisitem.author.orcid0000-0001-5512-0956-
Appears in Collections:Research outputs
Show simple item record

SCOPUSTM   
Citations

2
checked on Sep 23, 2025

Page view(s)

16
checked on Jan 19, 2025

Google ScholarTM

Check

Altmetric

Altmetric


Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.