Please use this identifier to cite or link to this item: https://research.matf.bg.ac.rs/handle/123456789/383
DC FieldValueLanguage
dc.contributor.authorBokan, Nedaen_US
dc.contributor.authorRakić, Zoranen_US
dc.date.accessioned2022-08-10T19:26:23Z-
dc.date.available2022-08-10T19:26:23Z-
dc.date.issued2006-01-01-
dc.identifier.issn02198878en
dc.identifier.urihttps://research.matf.bg.ac.rs/handle/123456789/383-
dc.description.abstractA complete decomposition of the space R(Vp⊗q) of the curvature tensors over tensor product of vector spaces into simple modules under the action of the group G = GL(p, ℝ) ⊗ GL(q, ℝ) is given. We use these results to study geometry of manifolds with Grassmann structure and Grassmann manifolds endowed with a connection whose torsion is not zero. We show that Oscr M a manifold is an example of a manifold with Grassmann structure. Owing to this fact, we consider results of Miron, Atanasiu, Anastasiei, C;̌omić and others from representation theory point of view and connect them with some results of Alekseevsky, Cortes, and Devchand, as well as of Machida and Sato, and others. New examples of connections with torsion defined on four-dimensional Grassmann manifold are given. Symmetries of curvatures for half-flat connections are also investigated. We use algebraic results to reveal obstructions to the existence of corresponding connections. © 2006 World Scientific Publishing Company.en_US
dc.language.isoenen_US
dc.publisherWorld Scientificen_US
dc.relation.ispartofInternational Journal of Geometric Methods in Modern Physicsen_US
dc.subjectAction of a groupen_US
dc.subjectGrassmann manifolden_US
dc.subjectHolonomy groupen_US
dc.subjectIrreducible representationen_US
dc.subjectNormalizationen_US
dc.subjectTorsion-free connectionen_US
dc.titleCurvature submodules for Grassmann structures with torsionen_US
dc.typeArticleen_US
dc.identifier.doi10.1142/s021988780600151x-
dc.identifier.scopus2-s2.0-33750105823-
dc.identifier.isi000241596200011-
dc.identifier.urlhttps://api.elsevier.com/content/abstract/scopus_id/33750105823-
dc.contributor.affiliationGeometryen_US
dc.relation.issn0219-8878en_US
dc.description.rankM22en_US
dc.relation.firstpage975en_US
dc.relation.lastpage993en_US
dc.relation.volume3en_US
dc.relation.issue5-6en_US
item.openairetypeArticle-
item.cerifentitytypePublications-
item.languageiso639-1en-
item.grantfulltextnone-
item.fulltextNo Fulltext-
item.openairecristypehttp://purl.org/coar/resource_type/c_18cf-
crisitem.author.deptGeometry-
crisitem.author.orcid0000-0002-6226-0479-
Appears in Collections:Research outputs
Show simple item record

Page view(s)

9
checked on Jan 19, 2025

Google ScholarTM

Check

Altmetric

Altmetric


Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.