Please use this identifier to cite or link to this item: https://research.matf.bg.ac.rs/handle/123456789/383
DC FieldValueLanguage
dc.contributor.authorBokan, Nedaen_US
dc.contributor.authorRakić, Zoranen_US
dc.date.accessioned2022-08-10T19:26:23Z-
dc.date.available2022-08-10T19:26:23Z-
dc.date.issued2006-01-01-
dc.identifier.issn02198878en
dc.identifier.urihttps://research.matf.bg.ac.rs/handle/123456789/383-
dc.description.abstractA complete decomposition of the space R(Vp⊗q) of the curvature tensors over tensor product of vector spaces into simple modules under the action of the group G = GL(p, ℝ) ⊗ GL(q, ℝ) is given. We use these results to study geometry of manifolds with Grassmann structure and Grassmann manifolds endowed with a connection whose torsion is not zero. We show that Oscr M a manifold is an example of a manifold with Grassmann structure. Owing to this fact, we consider results of Miron, Atanasiu, Anastasiei, C;̌omić and others from representation theory point of view and connect them with some results of Alekseevsky, Cortes, and Devchand, as well as of Machida and Sato, and others. New examples of connections with torsion defined on four-dimensional Grassmann manifold are given. Symmetries of curvatures for half-flat connections are also investigated. We use algebraic results to reveal obstructions to the existence of corresponding connections. © 2006 World Scientific Publishing Company.en
dc.relation.ispartofInternational Journal of Geometric Methods in Modern Physicsen
dc.subjectAction of a groupen
dc.subjectGrassmann manifolden
dc.subjectHolonomy groupen
dc.subjectIrreducible representationen
dc.subjectNormalizationen
dc.subjectTorsion-free connectionen
dc.titleCurvature submodules for Grassmann structures with torsionen_US
dc.typeArticleen_US
dc.identifier.doi10.1142/s021988780600151x-
dc.identifier.scopus2-s2.0-33750105823-
dc.identifier.urlhttps://api.elsevier.com/content/abstract/scopus_id/33750105823-
dc.contributor.affiliationGeometryen_US
dc.relation.firstpage975en
dc.relation.lastpage993en
dc.relation.volume3en
dc.relation.issue5-6en
item.fulltextNo Fulltext-
item.openairetypeArticle-
item.grantfulltextnone-
item.openairecristypehttp://purl.org/coar/resource_type/c_18cf-
item.cerifentitytypePublications-
crisitem.author.deptGeometry-
crisitem.author.orcid0000-0002-6226-0479-
Appears in Collections:Research outputs
Show simple item record

Page view(s)

8
checked on Nov 15, 2024

Google ScholarTM

Check

Altmetric

Altmetric


Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.