Please use this identifier to cite or link to this item: https://research.matf.bg.ac.rs/handle/123456789/381
DC FieldValueLanguage
dc.contributor.authorDragovich, B.en_US
dc.contributor.authorRakić, Zoranen_US
dc.date.accessioned2022-08-10T19:26:23Z-
dc.date.available2022-08-10T19:26:23Z-
dc.date.issued2004-01-01-
dc.identifier.issn00405779en
dc.identifier.urihttps://research.matf.bg.ac.rs/handle/123456789/381-
dc.description.abstractWe consider an extension of the Feynman path integral to the quantum mechanics of noncommuting spatial coordinates and formulate the corresponding formalism for noncommutative classical dynamics related to quadratic Lagrangians (Hamiltonians). The basis of our approach is that a quantum mechanical system with a noncommutative configuration space can be regarded as another effective system with commuting spatial coordinates. Because the path integral for quadratic Lagrangians is exactly solvable and a general formula for the probability amplitude exists, we restrict our research to this class of Lagrangians. We find a general relation between quadratic Lagrangians in their commutative and noncommutative regimes and present the corresponding noncommutative path integral. This method is illustrated with two quantum mechanical systems in the noncommutative plane: a particle in a constant field and a harmonic oscillator.en
dc.relation.ispartofTheoretical and Mathematical Physicsen
dc.subjectFeynman path integralen
dc.subjectnoncommutative quantum mechanicsen
dc.subjectsystems with quadratic Lagrangiansen
dc.titlePath integrals in noncommutative quantum mechanicsen_US
dc.typeArticleen_US
dc.identifier.doi10.1023/B:TAMP.0000039834.84359.f8-
dc.identifier.scopus2-s2.0-4444315719-
dc.identifier.urlhttps://api.elsevier.com/content/abstract/scopus_id/4444315719-
dc.contributor.affiliationGeometryen_US
dc.relation.firstpage1299en
dc.relation.lastpage1308en
dc.relation.volume140en
dc.relation.issue3en
item.fulltextNo Fulltext-
item.openairetypeArticle-
item.grantfulltextnone-
item.openairecristypehttp://purl.org/coar/resource_type/c_18cf-
item.cerifentitytypePublications-
crisitem.author.deptGeometry-
crisitem.author.orcid0000-0002-6226-0479-
Appears in Collections:Research outputs
Show simple item record

SCOPUSTM   
Citations

20
checked on Nov 8, 2024

Page view(s)

7
checked on Nov 15, 2024

Google ScholarTM

Check

Altmetric

Altmetric


Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.