Please use this identifier to cite or link to this item: https://research.matf.bg.ac.rs/handle/123456789/379
DC FieldValueLanguage
dc.contributor.authorRakić, Zoranen_US
dc.date.accessioned2022-08-10T19:26:22Z-
dc.date.available2022-08-10T19:26:22Z-
dc.date.issued1999-07-15-
dc.identifier.issn00243795en
dc.identifier.urihttps://research.matf.bg.ac.rs/handle/123456789/379-
dc.description.abstractLet M be a pointwise Osserman Riemannian manifold. Here we give a proof of the duality principle for associated curvature tensor R of M. © 1999 Published by Elsevier Science Inc. All rights reserved.en
dc.relation.ispartofLinear Algebra and Its Applicationsen
dc.subjectDuality principleen
dc.subjectJacobi operatoren
dc.subjectOsserman algebraic curvature tensoren
dc.subjectPointwise Osserman manifolden
dc.subjectRank-one symmetric spaceen
dc.subjectRiemannian manifolden
dc.titleOn duality principle in Osserman manifoldsen_US
dc.typeArticleen_US
dc.identifier.doi10.1016/S0024-3795(99)00116-0-
dc.identifier.scopus2-s2.0-0033453391-
dc.identifier.urlhttps://api.elsevier.com/content/abstract/scopus_id/0033453391-
dc.contributor.affiliationGeometryen_US
dc.relation.firstpage183en
dc.relation.lastpage189en
dc.relation.volume296en
dc.relation.issue1-3en
item.fulltextNo Fulltext-
item.openairetypeArticle-
item.grantfulltextnone-
item.openairecristypehttp://purl.org/coar/resource_type/c_18cf-
item.cerifentitytypePublications-
crisitem.author.deptGeometry-
crisitem.author.orcid0000-0002-6226-0479-
Appears in Collections:Research outputs
Show simple item record

SCOPUSTM   
Citations

25
checked on Nov 9, 2024

Page view(s)

10
checked on Nov 15, 2024

Google ScholarTM

Check

Altmetric

Altmetric


Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.