Please use this identifier to cite or link to this item:
https://research.matf.bg.ac.rs/handle/123456789/379
DC Field | Value | Language |
---|---|---|
dc.contributor.author | Rakić, Zoran | en_US |
dc.date.accessioned | 2022-08-10T19:26:22Z | - |
dc.date.available | 2022-08-10T19:26:22Z | - |
dc.date.issued | 1999-07-15 | - |
dc.identifier.issn | 00243795 | en |
dc.identifier.uri | https://research.matf.bg.ac.rs/handle/123456789/379 | - |
dc.description.abstract | Let M be a pointwise Osserman Riemannian manifold. Here we give a proof of the duality principle for associated curvature tensor R of M. © 1999 Published by Elsevier Science Inc. All rights reserved. | en |
dc.relation.ispartof | Linear Algebra and Its Applications | en |
dc.subject | Duality principle | en |
dc.subject | Jacobi operator | en |
dc.subject | Osserman algebraic curvature tensor | en |
dc.subject | Pointwise Osserman manifold | en |
dc.subject | Rank-one symmetric space | en |
dc.subject | Riemannian manifold | en |
dc.title | On duality principle in Osserman manifolds | en_US |
dc.type | Article | en_US |
dc.identifier.doi | 10.1016/S0024-3795(99)00116-0 | - |
dc.identifier.scopus | 2-s2.0-0033453391 | - |
dc.identifier.url | https://api.elsevier.com/content/abstract/scopus_id/0033453391 | - |
dc.contributor.affiliation | Geometry | en_US |
dc.relation.firstpage | 183 | en |
dc.relation.lastpage | 189 | en |
dc.relation.volume | 296 | en |
dc.relation.issue | 1-3 | en |
item.openairetype | Article | - |
item.fulltext | No Fulltext | - |
item.openairecristype | http://purl.org/coar/resource_type/c_18cf | - |
item.grantfulltext | none | - |
item.cerifentitytype | Publications | - |
crisitem.author.dept | Geometry | - |
crisitem.author.orcid | 0000-0002-6226-0479 | - |
Appears in Collections: | Research outputs |
SCOPUSTM
Citations
25
checked on Jun 11, 2025
Page view(s)
10
checked on Jan 19, 2025
Google ScholarTM
Check
Altmetric
Altmetric
Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.