Please use this identifier to cite or link to this item: https://research.matf.bg.ac.rs/handle/123456789/379
DC FieldValueLanguage
dc.contributor.authorRakić, Zoranen_US
dc.date.accessioned2022-08-10T19:26:22Z-
dc.date.available2022-08-10T19:26:22Z-
dc.date.issued1999-07-15-
dc.identifier.issn00243795en
dc.identifier.urihttps://research.matf.bg.ac.rs/handle/123456789/379-
dc.description.abstractLet M be a pointwise Osserman Riemannian manifold. Here we give a proof of the duality principle for associated curvature tensor R of M. © 1999 Published by Elsevier Science Inc. All rights reserved.en_US
dc.language.isoenen_US
dc.publisherElsevieren_US
dc.relation.ispartofLinear Algebra and Its Applicationsen_US
dc.subjectDuality principleen_US
dc.subjectJacobi operatoren_US
dc.subjectOsserman algebraic curvature tensoren_US
dc.subjectPointwise Osserman manifolden_US
dc.subjectRank-one symmetric spaceen_US
dc.subjectRiemannian manifolden_US
dc.titleOn duality principle in Osserman manifoldsen_US
dc.typeArticleen_US
dc.identifier.doi10.1016/S0024-3795(99)00116-0-
dc.identifier.scopus2-s2.0-0033453391-
dc.identifier.isi000082618500011-
dc.identifier.urlhttps://api.elsevier.com/content/abstract/scopus_id/0033453391-
dc.contributor.affiliationGeometryen_US
dc.relation.issn0024-3795en_US
dc.description.rankM22en_US
dc.relation.firstpage183en_US
dc.relation.lastpage189en_US
dc.relation.volume296en_US
dc.relation.issue1-3en_US
item.openairecristypehttp://purl.org/coar/resource_type/c_18cf-
item.grantfulltextnone-
item.cerifentitytypePublications-
item.fulltextNo Fulltext-
item.openairetypeArticle-
item.languageiso639-1en-
crisitem.author.deptGeometry-
crisitem.author.orcid0000-0002-6226-0479-
Appears in Collections:Research outputs
Show simple item record

SCOPUSTM   
Citations

26
checked on Feb 12, 2026

Page view(s)

10
checked on Jan 19, 2025

Google ScholarTM

Check

Altmetric

Altmetric


Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.