Please use this identifier to cite or link to this item: https://research.matf.bg.ac.rs/handle/123456789/376
DC FieldValueLanguage
dc.contributor.authorBlažić, Novicaen_US
dc.contributor.authorBokan, Nedaen_US
dc.contributor.authorRakić, Zoranen_US
dc.date.accessioned2022-08-10T19:26:22Z-
dc.date.available2022-08-10T19:26:22Z-
dc.date.issued1998-01-01-
dc.identifier.issn00222488en
dc.identifier.urihttps://research.matf.bg.ac.rs/handle/123456789/376-
dc.description.abstractIt is known that Riemannian and Lorentzian four-dimensional dynamically homogeneous manifolds are two-point homogeneous spaces. This is not true for signature (--++) (neutral or Kleinian signature). In order to better understand their rich structure we study the geometry of nonsymmetric dynamically homogeneous spaces (types II and III): they admit autoparallel distributions and they are locally foliated by totally geodesic, flat, isotropic two-dimensional submanifolds. Moreover we characterize them locally in terms of the existence of an appropriate coordinate system (in the sense of A. G. Walker [Q. J. Math. 1, 69-79 (1950)]). © 1998 American Institute of Physics.en
dc.relation.ispartofJournal of Mathematical Physicsen
dc.titleFoliation of a dynamically homogeneous neutral manifolden_US
dc.typeArticleen_US
dc.identifier.doi10.1063/1.532617-
dc.identifier.scopus2-s2.0-0039448067-
dc.identifier.urlhttps://api.elsevier.com/content/abstract/scopus_id/0039448067-
dc.contributor.affiliationGeometryen_US
dc.relation.firstpage6118en
dc.relation.lastpage6124en
dc.relation.volume39en
dc.relation.issue11en
item.fulltextNo Fulltext-
item.openairetypeArticle-
item.grantfulltextnone-
item.openairecristypehttp://purl.org/coar/resource_type/c_18cf-
item.cerifentitytypePublications-
crisitem.author.deptGeometry-
crisitem.author.orcid0000-0002-6226-0479-
Appears in Collections:Research outputs
Show simple item record

SCOPUSTM   
Citations

6
checked on Nov 15, 2024

Page view(s)

13
checked on Nov 15, 2024

Google ScholarTM

Check

Altmetric

Altmetric


Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.